Quantum Information Processing in Non-Markovian Quantum Complex Systems 2019, December

Geometric interpretation of weak value in quantum theory and geometric picture for negative probability

Shogo Tanimura Nagoya University

I am

- a professor of Nagoya University
- a colleague of Dr. Francesco Buscemi
- investigating fundamental aspects of quantum theory

This talk

- 1. Introduction to the notion of weak value formalism
- 2. Experimental demonstration
- 3. Geometric interpretation of weak value
- 4. Implication

Weak value

- In 1988, Aharonov, Albert, Vaidman proposed a notion of weak value.
- It is named "weak value" since it is measured via "weak measurement", in which interaction between an object and an apparatus is weak.
- It is more sensible to call an expectation value conditioned by a set of an initial state and a final state.

Yakir Aharonov

https://history.aip.org/phn/ 11408012.html

Difference of observable and value

Observables

- admitting algebraic manipulations like sum, product, and scalar multiplication.
 Products are noncommutative in general.
- $L_1 + L_2 = L_3$ (sum of lengths)
- $L = 2\pi r$, $S = \pi r^2$, $S = \frac{1}{2}ab$
- $E = mc^2$, $E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 + mgz$

•
$$H = \frac{1}{2m}p^2 + \frac{1}{2}kq^2$$
, $qp - pq = i\hbar$

• $S_n = S_x + S_y$

Difference of observable and value

• Value

Measurement of an observable yields a real number if a unit quantity is defined.

- $\varepsilon(M) = 55 \text{ kg}$ (ε : evaluation map)
- It is allowed to write M = 55 kg
- It is better to write $M \rightarrow 55 \text{ kg}$ or $M \leftarrow 55 \text{ kg}$
- $\varepsilon(L) = 1.67 \text{ m}$

Subtleness of quantum observables

In general,

Value of (sum of observables)

≠ Sum of (values of observables)

For example,

•
$$H = \frac{1}{2m}p^2 + \frac{1}{2}kq^2$$

- Measurement of p yields continuous $-\infty \leq p \leq \infty$
- Measurement of q yields continuous – $\infty \le q \le \infty$
- However, measurement of *H* yields disctere $\hbar\omega\left(n+\frac{1}{2}\right)$
- $S_n = S_x + S_y$
 - Individual measurements of S_x , S_y yield ± 1
 - However, measurement of S_n yields $\pm \sqrt{2}$

Subtleness of quantum observables

In general,

Value of (sum of observables) ≠ Sum of (values of observables)

Namely,

there is no nontrivial homomorphism from the noncommutative algebra of observables to the commutative algebra of real numbers. Three kinds of values in quantum theory 1. Eigenvalue (spectral value) $\hat{A}|\varphi_i\rangle = a_i|\varphi_i\rangle$

- $\{a_1, a_2, a_3, \cdots\}$
- Yield of individual measurement

2. Expectation value

$$\langle \hat{A} \rangle = \mathbf{E}[\hat{A}] = \langle \psi | \hat{A} | \psi \rangle$$

• Average of accumulated data

3. Weak value

$$w(\hat{A}) = \frac{\langle \psi_{\rm fin} | \hat{A} | \psi_{\rm ini} \rangle}{\langle \psi_{\rm fin} | \psi_{\rm ini} \rangle}$$

Properties of weak value

Weak value

$$w(\hat{A}) = \frac{\langle \psi_{\text{fin}} | \hat{A} | \psi_{\text{ini}} \rangle}{\langle \psi_{\text{fin}} | \psi_{\text{ini}} \rangle}$$

1. Complex number

- 2. Invariant under arbitrary phase transformation $|\psi_k\rangle \rightarrow e^{i\theta_k} |\psi_k\rangle$
- 3. Even if \hat{A} has the maximum eigenvalue a_{max} and the minimum eigenvalue a_{min} ,

 $a_{\min} \leq \operatorname{Re} w(\hat{A}) \leq a_{\max}$

does NOT hold in general.

Example of calculation of weak value spin $\frac{1}{2}$ (2-state system) $|\psi\rangle = c_1|\uparrow\rangle + c_2|\downarrow\rangle$ $w(\hat{\sigma}_{\chi}) = \frac{\langle \psi_{\text{fin}} | \hat{\sigma}_{\chi} | \psi_{\text{ini}} \rangle}{\langle \psi_{\text{fin}} | \psi_{\text{ini}} \rangle} = \frac{\sqrt{1 - \varepsilon^2}}{\varepsilon} \to \pm \infty$ $(\varepsilon \to \pm 0)$

Experiments

Filter for polarization of light

Polarization filter

selectively permits pass of light

Orthogonal filters

do not permit light pass at all

Polarization filters

Orthogonal filters

Application of polarization

Liquid crystal display

Application of polarization

Sunglasses

Birefringence

ことを

1:0

Calcite

とはとの瞬间のことなのかよくわから ないし、「波束はどんなメカニズムで、 どんな速さで収縮するのか」などとい う、答えようのない疑問も生じる。そ

たが、実験のふりえによって干渉縞 がてきたりてき、かたりするのは、 仮えてはなく中央でいた。偏光板を置 し、干渉縞を作る。スリットに0° の。の偏光板を置けば、光は粒子の

ん福を作るの んを90°回して偏光 んても、やはりスク! あ編が現れる。しかもよく 、偏光板を45°にしたときと干 り明暗が反転する。45°で「明暗 だった部分が、135°で になっている(右へ

Polarization filter on birefringence

135°に変えても、やはりスクリーン	たか、実験の
には干渉縞が現れる。しかもよく見る	かできたりでき
と、偏光板を45°にしたときと干渉縞	仮説ではなく単
の明暗が反転する。45°で「明暗明」	
だった部分が、135°では「暗明暗」	過し、干渉縞を
になっている (右ページの図下段)。	と90°の 偏光板
ということは、0°と90°の偏光板に	ごとく片方だけ
ーめになくな	らない (右ペー
は、単に埋	その先に45°の
たけで、実	ばり波動として
Contraction of the	1 一丁 油上生産たり

まずダブルフ

し, 左右の7

板を置く。

は干渉縞を

はずである

トを通り抜

手に 45° 偏

光子はど

作る。スリットに0°

を置けば、光は粒子の

を通過し, 干渉縞は作

ジの図上段)。さらに

偏光板を置くと、やっ

両方のスリットを通過

る(同下段)。実験の

第で光が粒子のように行動し

Birefringence

Birefringence decomposes light into two orthogonal polarization components.

Experimental realization of weak value 1/3 Almost orthogonal polarization filters

Experimental realization of weak value 2/3 Aliment of the birefringent crystal

45°-polarized light is refracted by 1mm

135°-polarized light is refracted by 1mm in the opposite direction

Experimental realization of weak value 3/3 Insert the birefringent crystal into the two almost orthogonal filters

Expectation value with nonnegative probability

Theorem: If \hat{A} has the maximum eigenvalue a_{max} and the minimum eigenvalue a_{min} , it holds that

$$a_{\min} \leq \langle \hat{A} \rangle \leq a_{\max}$$

Proof: By assumption

 $a_{\min} \leq a_i \leq a_{\max}$ For probability p_i satisfying $0 \leq p_i \leq 1$, $\sum_i p_i = 1$,

$$p_i a_{\min} \le p_i a_i \le p_i a_{\max}$$
$$a_{\min} = \sum_i p_i a_{\min} \le \sum_i p_i a_i \le \sum_i p_i a_{\max} = a_{\max}$$

Probabilistic interpretation of weak value

$$w(\hat{A}) = \frac{\langle \psi_{\text{fin}} | \hat{A} | \psi_{\text{ini}} \rangle}{\langle \psi_{\text{fin}} | \psi_{\text{ini}} \rangle} = \sum_{i} p_{i} a_{i}$$

If $a_{\min} \le w(\hat{A}) \le a_{\max}$ does not hold, we must discard at least one of the two assumptions, $0 \le p_i \le 1$ or $\sum_i p_i = 1$. On the other hand, the normalization condition

$$w(\hat{1}) = \frac{\langle \psi_{\text{fin}} | \hat{1} | \psi_{\text{ini}} \rangle}{\langle \psi_{\text{fin}} | \psi_{\text{ini}} \rangle} = 1 = \sum_{i} p_{i}$$

holds. Therefore, we must discard $0 \le p_i \le 1$.

Model of weak measurement

object: $|\psi\rangle \in \mathfrak{H}$ $\hat{A} = \sum_{a} a \widehat{\Pi}_{a}$ $\hat{B} = \sum_{b} b \widehat{\Pi}_{b}$ apparatus: $|\lambda\rangle \in \mathcal{L}$, \widehat{M} (meter observable) composite system: $|\psi\rangle \otimes |\lambda\rangle \in \mathfrak{H} \otimes \mathcal{L}$ interaction: $|\psi\rangle \otimes |\lambda\rangle \mapsto \widehat{U}_{q} |\psi\rangle \otimes |\lambda\rangle$ (g:coupling constant) We want to know the value of \hat{A} We can read only the value of \hat{M} The final state $|\psi_{fin}\rangle$ is an eigenstate $|b\rangle$ of \hat{B} . We assume asymptotic behavior in $q \rightarrow 0$

$$\begin{split} &\widehat{U}_g \to \widehat{1} - \frac{i}{\hbar} \widehat{A} \otimes \widehat{P}_M, \qquad \left[\widehat{M}, \widehat{P}_M \right] = i\hbar \widehat{1} \\ &\frac{d}{dg} \widehat{U}_g^{\dagger} (\widehat{1} \otimes \widehat{M}) \widehat{U}_g \to \widehat{A} \otimes \widehat{1} \end{split}$$

Then,

Lee and Tsutsui's formula for weak value

Expectation value of the meter observable conditioned by the yield of the final measurement:

$$\mathbf{E}[\widehat{M}|\widehat{B}=b] \coloneqq \frac{\langle \psi \otimes \lambda | \widehat{U}^{\dagger}(\widehat{\Pi}_{b} \otimes \widehat{M}) \widehat{U} | \psi \otimes \lambda \rangle}{\langle \psi \otimes \lambda | \widehat{U}^{\dagger}(\widehat{\Pi}_{b} \otimes \widehat{1}) \widehat{U} | \psi \otimes \lambda \rangle}$$

Sensitivity of the meter $\lim_{g \to 0} \frac{d}{dg} \mathbf{E} [\widehat{M} | \widehat{B} = b] = \mathbf{Re} \frac{\langle \psi | \widehat{\Pi}_b \widehat{A} | \psi \rangle}{\langle \psi | \widehat{\Pi}_b | \psi \rangle}$ $+ \mathbf{Im} \left(\frac{\langle \psi | \widehat{\Pi}_b \widehat{A} | \psi \rangle}{\langle \psi | \widehat{\Pi}_b | \psi \rangle} \right) \frac{1}{\hbar} \{ \frac{1}{2} \langle \psi | (\widehat{M} \widehat{P}_M + \widehat{P}_M \widehat{M}) | \psi \rangle - \langle \psi | \widehat{M} | \psi \rangle \langle \psi | \widehat{P}_M | \psi \rangle \}$

Lee and Tsutsui, PTEP (2017), Eq. (4.63)

Rewriting the weak value

If the eigenvalue of the final yield is nondegenerated, $\hat{\Pi}_b = |b\rangle\langle b|$ is a projection to 1-dim eigenspace. In this case, we have

$$\frac{\langle \psi | \hat{\Pi}_{b} \hat{A} | \psi \rangle}{\langle \psi | \hat{\Pi}_{b} | \psi \rangle} = \frac{\langle \psi | b \rangle \langle b | \hat{A} | \psi \rangle}{\langle \psi | b \rangle \langle b | \psi \rangle} = \frac{\langle b | \hat{A} | \psi \rangle}{\langle b | \psi \rangle} = \frac{\langle \psi_{\text{fin}} | \hat{A} | \psi_{\text{ini}} \rangle}{\langle \psi_{\text{fin}} | \psi_{\text{ini}} \rangle}$$

The formula of Lee and Tsutsui is reduced to the formula of Aharanov-Albert-Vaidman.

Rewriting the weak value 2

By putting $\hat{A} = \sum_{a} a \hat{\Pi}_{a}$ into,

$$\frac{\langle \psi | \hat{\Pi}_b \hat{A} | \psi \rangle}{\langle \psi | \hat{\Pi}_b | \psi \rangle} = \sum_a a \frac{\langle \psi | \hat{\Pi}_b \hat{\Pi}_a | \psi \rangle}{\langle \psi | \hat{\Pi}_b | \psi \rangle}$$

Probability formula of Born

$$\mathbf{P}[\hat{B}=b] \coloneqq \langle \psi | \hat{\Pi}_b | \psi \rangle$$

Pseudoprobability of Kirkwood-Dirac (complex number)

$$\mathbf{P}[\hat{A} = a, \hat{B} = b] \coloneqq \langle \psi | \hat{\Pi}_b \hat{\Pi}_a | \psi \rangle$$

Conditional probability

$$\mathbf{P}[\hat{A} = a | \hat{B} = b] \coloneqq \frac{\mathbf{P}[\hat{A} = a, \hat{B} = b]}{\mathbf{P}[\hat{B} = b]}$$

Geometric interpretation of the Kirkwood-Dirac pseudoprobability $\mathbf{P}[\hat{A} = a, \hat{B} = b] = \langle \psi | \hat{\Pi}_b \hat{\Pi}_a | \psi \rangle = \langle \psi | b \rangle \langle b | a \rangle \langle a | \psi \rangle$ (a)(a)(4) 16/01/0/w subspace spanned by $|\psi\rangle$ subspace spanned by lai $|\psi\rangle\langle\psi|b\rangle\langle b|a\rangle\langle a|\psi\rangle$ $|\psi\rangle$ Sbanned bull The coefficient of the vector projected three times is equal to the pseudoprobability

When the pseudoprobability becomes negative

- Commutative self-adjoint operators are simultaneously diagonalizable.
- Their eigenspaces are mutually parallel or orthogonal.
- The associated projections are commutative and their product is also projection.
- The joint probability $\mathbf{P}[\hat{A} = a, \hat{B} = b] = \langle \psi | \hat{\Pi}_b \hat{\Pi}_a | \psi \rangle = \langle \psi | \hat{\Pi}_a \hat{\Pi}_b | \psi \rangle$ is real and nonnegative.

When the pseudoprobability becomes negative?

- Noncommutative self-adjoint operators are not simultaneously diagonalizable.
- Their eigensubspaces are neither parallel nor orthogonal.

 $|\psi\rangle$

1(3/0)(0)(0)

• It is possible to invert the direction of vectors by a $|\psi\rangle\langle\psi|b\rangle\langle b|a\rangle\langle a|\psi$ sequential operations of non-orthogonal projections.

Necessary condition for obtaining negative pseudoprobability

- The object observable \hat{A} is weakly measured at the intermediate state.
- The object observable \hat{B} is projectively measured at the final state.
- It is necessary for obtaining negative pseudoprobability that the two observables \hat{A} and \hat{B} are noncommutative.

Negative probability induces amplification of weak value

- Expectation value = weighted average of spectral values
- If weights are positive, average is an internal dividing point.
- If some of weights are negative, average is an outer dividing point.

Understanding aided by pseudoprobability

- Violation of Bell's inequality (Fine's theorem)
- Complex pseudoprobability causes the Pancharatnam phase.
- Joint probabilities for initial, intermediate, and final states may define quantum stochastic process. But not yet fully discussed.

References

- 1. <u>谷村省吾「アインシュタインの夢ついえる」</u>(ベ ルの不等式の破れの検証実験の解説記事) 日経サイエンス 2019年2月号の<u>ウェブ補足解説</u>.
- 2. Lee and Tsutsui, "Quasi-probabilities in conditioned quantum measurement and a geometric/statistical interpretation of Aharonov's weak value", <u>PTEP (2017)</u>.
- Tamate, Kobayashi, Nakanishi, Sugiyama, Kitano, "Geometrical aspects of weak measurements and quantum erasers", <u>NJP</u> (2009).

Thank you for your attention