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Plan of this talk 
• Introduction 
• A toy model: momentum superselection rule 
• Tool: von Neumann’s indirect measurement 

model 
• Basic notions: isolated conservation law, 

covariant indicator 
• Main theorem: we derive the superselection 

rule from a conservation law in measurement 
process. 
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Superselection Rule 
• 𝐽: superselection charge 
• 𝐴 : self-adjoint operator, 𝐴† = 𝐴 
The superselection rule states 
 𝐴  is measurable ⇒ 𝐴, 𝐽 = 0 
By contraposition, 
  𝐴, 𝐽 ≠ 0  ⇒  𝐴 is non-measurable 

The superselection rule is a necessary condition 
for a self-adjoint operator 𝐴 to be a measurable 
quantity. 
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History of superselection rule 
Wick, Wigner, Wightman (1952) noticed that not every 
self-adjoint operator represents a physically 
measurable quantity. 
𝜓： Dirac field operator 
 
These are self-adjoint but they are not measurable. 
 
Charge density and current density are measurable. 
Although the intensity of electron wave is measurable, 
its phase is non-measurable. 

1
2
𝜓 + 𝜓† ,      1

2𝑖
𝜓 − 𝜓†  

𝜓†𝜓,  𝜓�𝛾𝜇𝜓 

We can observe an interference fringe of the electron wave but we cannot determine its phase. 
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Univalence superselection rule 

𝐽 = 𝑅 2𝜋 : rotation by 360 degree around any axis. 
A measurable quantity 𝐴 must satisfy 
 
 
On the other hand, the Dirac spinor field 𝜓 satisfies 
 
 
Thus the Dirac spinor field 𝜓 itself is not a measurable 
quantity even though 𝜓†𝜓 is measurable. 

𝑅 2𝜋 †𝐴𝑅 2𝜋 = 𝐴  or equivalently,   𝐴, 𝐽 = 0 

𝑅 2𝜋 †𝜓𝑅 2𝜋 = −𝜓, 𝑅 2𝜋 †𝜓†𝑅 2𝜋 = −𝜓† 

another derivation by Hegerfeldt, Kraus, Wigner (1968) 
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How did they notice it? 
Around 1950, physicists discussed definition of the 
parity transformation of the Dirac field. It was not 
uniquely defined but it had an ambiguity. 
 
Parity transform: 
The phase factor        is not uniquely determined. 
 
In 1952, WWW noted that the parity transformation of 
the Dirac spinor is allowed to be unfixed since the Dirac 
spinor itself is non-measurable.  

𝜓 𝒙, 𝑡 → 𝛱𝜓 𝒙, 𝑡 = 𝑒𝑖𝜃𝛾0𝜓 −𝒙, 𝑡  

𝑒𝑖𝜃 
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Correspondence of mathematical 
notion to physical observable 

• Mathematical notion: self-adjoint operator 
• Physical notion:  
 observable (measurable quantity) 
 
Do they have one-to-one correspondence? 
In the usual framework of quantum mechanics, 
their one-to-one correspondence is assumed. 
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von Neumann’s argument (1932) 
After showing that every observable is 
representable by a self-adjoint operator, von 
Neumann argued that it is appropriate to 
assume that there is a physical observable 
corresponding to each self-adjoint operator. 
         observable ⇒   (⇐?) self-adjoint: 𝐴† = 𝐴 
The superselection rule tells that this 
assumption is not appropriate.  
There is a self-adjoint operator that does NOT 
correspond to any physical observable.  
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von Neumann, “Mathematical Foundations of 
Quantum Mechanics,” Section IV.2 

• 井上・広重・恒藤 訳（1957年） p.250 
《量子力学的系の物理量に対して超極大なエルミート作用
素を一意的に対応させられることは，我々の知っている通り
であるが，それに加えて，これらの対応は一対一である，す
なわち，すべての超極大エルミート作用素は現実に物理量
に対応している，と仮定するのが都合がよい．》 

• Original German expression by von Neumann (1932) 
《... es ist zweckmässig anzunehmen, ...》 

• English translation by Beyer (1955) 
《... it is convenient to assume, ...》 

• English translation by Wightman (1995) 
《... it is appropriate to assume, ...》 
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Other examples:  
Not every self-adjoint operator 

corresponds to observable 

• Lorentz boost generators 
• Dilatation generator 
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For making a clear argument we 
need a clear definition 

• self-adjoint: mathematically well-defined 
notion 

• observable (something measurable): not clear 
 

It is necessary to formulate the notion of 
measurement. 
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Toy model to help understanding of the 
superselection rule 

• 𝑛 particles in one-dimensional space 
• masses:  𝑚1,𝑚2, … ,𝑚𝑛 
• positions:  𝑥1, 𝑥2, … , 𝑥𝑛 
• momenta:  𝑝1,𝑝2, … , 𝑝𝑛 
• An apparatus has a meter observable 𝑀. 
• Time-evolution of the whole system is 

described by a unitary operator 𝑈 
𝑀 

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 
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Indirect measurement model 
• The object system (𝑛-particle system) has a Hilbert space ℌ, 

while the apparatus has a Hilbert space 𝔎.  
• The initial state of the whole system is 𝜓⨂𝜉 ∈ ℌ⨂𝔎 
• An observable 𝐴 to be measured is a self-adjoint operator on 
ℌ, while a meter observable 𝑀 is a self-adjoint operator on 𝔎. 

• Interaction between them is described by a unitary operator 
𝑈 = 𝑒−𝑖𝑖𝑖/ℏ on the composite system ℌ⨂𝔎. 

• The meter 𝑈†𝑀𝑈 is read out by means of the Born probability 
rule. 

Object System Apparatus (observing system) 

meter  𝑀⟶ 𝑈†𝑀𝑈 observables  𝐴,𝐵 
𝑈 initial state 𝜓 ∈ ℌ initial state 𝜉 ∈ 𝔎 

interaction 
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• Suppose that we want to measure the position of the 
center of mass of the particles: 

𝐴 = 𝑋 ≔
∑ 𝑚𝑖𝑥𝑖𝑛
𝑖=1
∑ 𝑚𝑖
𝑛
𝑖=1

 

• Assume that the total momentum of the particles is 
conserved during the measurement process (isolated 
conservation law): 

𝐽 = 𝑃 ≔� 𝑝𝑖
𝑛

𝑖=1
, 𝑈†𝑃𝑈 = 𝑃 

• Does the meter move as  𝑈†𝑀𝑈 = 𝑀 + 𝑋 ? 
• Answer: It is impossible. 

Requirement 
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The total momentum of the particles 𝑃 = 𝑃⨂1 and the 
meter position operator 𝑀 = 1⨂𝑀 on ℌ⨂𝔎 commute 

𝑃,𝑀 = 0 
Since the time-evolution acts as an automorphim,  

𝑈†𝑃𝑈,𝑈†𝑀𝑈 = 𝑈† 𝑃,𝑀 𝑈 = 0 
On the other hand, the momentum conservation and 
the meter shift condition imply 

𝑈†𝑃𝑈,𝑈†𝑀𝑈 = 𝑃,𝑀 + 𝑋 = 𝑃,𝑋 = −𝑖ℏ 
These give a contradiction. In general, a quantity 
𝐴 measurable in the sense 𝑈†𝑀𝑈 = 𝑀 + 𝐴 must 
satisfy 𝑃,𝐴 = 0. 
 

Proof 
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General scheme which gives a rise of 
superselection rule 

Object System Apparatus (observing system) 

covariant meter  
𝑀⟶ 𝑈†𝑀𝑈 = 𝑀 + 𝐴  

observable  𝐴 

isolated conserved 
quantity  𝐽 ⟶ 𝑈†𝐽𝑈 = 𝐽 

𝑈 

interaction 

Derivation of the superselection rule 

 𝐽,𝑀 = 0, 
0 = 𝑈†  𝐽,𝑀 𝑈

= 𝑈†𝐽𝑈,𝑈†𝑀𝑈
=  𝐽,𝑀 + 𝐴
=  𝐽,𝐴  

∴  𝐽,𝐴 = 0. 
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definition of 
measurability 

A more general proof 
is given in my paper. 



Measurability 
• Physically meaningful measurement requires 

covariance between the quantity to be 
measured and the quantity to be read out. 
 
 
 

• But the structure of interaction between the 
object system and the apparatus may or may 
not allow the covariance. 
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: quantity to be read 

: quantity to be known 

meter 𝑀 

human weight  𝐴 

meter 𝑀 → 𝑀𝑀 
weight  𝐴 → 𝐴𝑀 

covariance is necessary for 
making meaningful 
measurement. 



The superselection rule associated to the momentum 
conservation law demands any measurable quantity 
𝐴 must satisfy 𝑃,𝐴 = 0, where 𝑃 = ∑ 𝑝𝑖𝑖  is the total 
momentum. 
Measurable: relative coordinates 

𝐴 = 𝑥𝑟 − 𝑥𝑠, 𝐴 =
𝑚1𝑥1 + 𝑚2𝑥2
𝑚1 + 𝑚2

− 𝑥3   

Non-measurable: absolute coordinates of the particle  

𝐴 = 𝑥𝑟 , 𝐴 =
∑ 𝑚𝑖𝑥𝑖𝑛
𝑖=1
∑ 𝑚𝑖
𝑛
𝑖=1

 

Measurable/non-measurable quantities 
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Symmetries / Superselection charges 

• 2π rotation invariance / univalence 
The Dirac spinor, which is not invariant under 2π 
rotation, is non-measurable. 

• U(1) invariance / electric charge, baryon 
number 
The phases of matter waves of electron or neutron 
are non-measurable. 

• Notice: Photon number is not conserved, 
hence, the phase of electromagnetic wave is 
measurable. 
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Paradox associated with Non-abelian 
symmetry 

For example, SO(3) rotation invariance implies 
the conservation of angular momenta 𝐽𝑥, 𝐽𝑦 , 𝐽𝑧, 
which are noncommutative each other. 
Hence the superselection rule prohibits the 
measurements of angular momenta. 
But, in actual experiments, we measure the spin 
angular momenta of electrons or photons. 
How is it possible? 
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Solution of the angular momentum paradox 

The SO(3) rotation invariance is broken by introducing 
external magnetic field (Zeeman effect or Stern-Gerlach 
setting) for nuclei or electrons, polarization filter or 
birefringent crystal for photons. 
All of the measurements of angular momenta introduce 
a coupling of the object system and the apparatus that 
breaks the isolation of the system and allows exchange 
of angular momenta between the two systems. 

𝐻 = 𝑔𝑺 ∙ 𝑩 
[𝐻,𝑺] ≠ 0 𝑆 

𝑩 𝐻 = 𝑔𝑺 ∙ 𝑳 
𝐻,𝑺 ≠ 0 

𝐻,𝑺 + 𝑳 = 0 

object spin external field 
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Why we can measure rotationally non-
invariant quantities? 

If the SO(3) rotation invariance is 
preserved within a microscopic system, 
we cannot measure any rotationally 
variant quantity from outside.  
However, actually we can measure it 
since the rotation invariance is 
spontaneously broken at the macroscopic 
scale. We can construct apparatus which 
has a non-spherical shape. Thus, we can 
apply rotationally non-invariant external 
field on a microscopic system. 
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How can we overcome  
the U(1) superselection rule? 

The isolated conservation of the U(1) charge makes 
measurements of gauge variant quantities impossible. 
By breaking the isolation, we can make such a 
measurement possible. 
Example: superconductivity, Josephson junction 

𝜑1 = 𝜑1 𝑒𝑖𝜃1  

𝜑2 = 𝜑2 𝑒𝑖𝜃2  

𝐻 = 𝑔𝜑1†𝜑2 + 𝑔𝜑2†𝜑1 

𝐼 = 𝜑1†𝜑2 − 𝜑2†𝜑1 

isolation is broken. 

Superconductor 

Cooper condensate  
𝜑 = 𝜑 𝑒𝑖𝜃  

superselection rule 
prevents the measurement. 

𝐼 
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Why the SU(3) color is invisible? 

In QCD, colored quantities like quark and gluon fields 
are non-measurable from outside of hadrons. 
Moreover, since SU(3) is non-abelian, color charge itself 
is non-measurable. If there are objects in which the 
color symmetry are spontaneously broken, we can 
measure their relative color difference. 

𝜓1𝜓1 Color 
superconductor 

𝜓𝜓 

superselection rule 
prevents the measurement. 

𝜓2𝜓2 

isolation is broken. 
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Uncertainty relation under a conservation law:  
Wigner-Araki-Yanase-Ozawa theorem 

𝐴 : observable to be measured 
𝑀 : meter of the apparatus 
𝐽1 : quantity of the object system 
𝐽2 : quantity of the apparatus 
𝑈 : unitary time-evolution  
𝛺 = 𝜓⊗ 𝜉 : initial state of the whole system 

𝜀 𝐴 2 = 𝛺 𝑈†𝑀𝑈 − 𝐴 2 𝛺  : measurement  error 

𝜎  𝐽1 2 = 𝛺  𝐽1 2 𝛺 − 𝛺  𝐽1 𝛺 2 : standard  deviation 
Assume  𝑈† 𝐽1 + 𝐽2 𝑈 = 𝐽1 + 𝐽2 

𝜀 𝐴 2 ≥
𝐴, 𝐽1 2

4 𝜎 𝐽1 2 + 𝜎 𝐽2 2 2 Theorem: 

interaction 

Object  Apparatus 

𝑀, 𝐽2, 𝜉 
𝐴, 𝐽1,𝜓 
𝐴, 𝐽1 ≠ 0 

𝑈 
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Comparison of the WAY-Ozawa theorem 
with the superselection rule 

The WAY theorem: 
The conservation of total charge 
 𝑈† 𝐽1 + 𝐽2 𝑈 = 𝐽1 + 𝐽2 
implies that a non-vanishing  
error of the measurement 𝜀 𝐴  
is evitable. 

Superselection rule: The isolated conservation law    
  𝑈†𝐽1𝑈 = 𝐽1 
implies the impossibility of 𝑀⟶ 𝑈†𝑀𝑈 = 𝑀 + 𝐴, that is, the 
meter 𝑀 cannot move covariantly to the object quantity 𝐴. 
This is an extremal form of the error-disturbance uncertainty 
relation. 

𝑈 

interaction 

Object  Apparatus 
𝐴, 𝐽1,𝜓 
𝐴, 𝐽1 ≠ 0 𝑀, 𝐽2, 𝜉 
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Accessible and Inaccessible Levels of the World 
Macroscopic level 

Microscopic level 

Invisible 
quantity 𝐵 
such that 
[𝐵, 𝐽] ≠ 0 

Visible 
quantity 𝐴 
must satisfy  
[𝐴, 𝐽] = 0 barrier by the 

isolated 
conservation law 

quantity 𝐴 

Less isolated conservation laws  
open the window of measurement and control 

symmetry breaking at 
macroscopic scale 

More visible quantities 
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Hierarchical structure of the nature 

Quarks and Gluons 

Hadrons and Nuclei 
Atoms and Molecules 

color symmetry is kept 
chiral symmetry is broken 

rotation symmetry is broken 

a picture inspired by P. W. Anderson’s “More is different”  

An isolated 
conservation law, that 
is, a superselection 
rule defines a border 
of two hierarchy, 
beyond which the 
underlying entities 
cannot be seen from 
the overlying  entities.  
On the other hand, 
spontaneous 
symmetry breaking 
provides a scope or a 
handle with which we 
can observe or control 
the underlying level 
from the overlying 
level. 

Underlying structure 

Life, Society, Planets, Cosmos 

Condensed matter, Crystal, Cell 

translation symmetry is broken 
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Conclusion 
• The uncertainty relation tells that we cannot precisely 

measure a quantity A  without disturbing another quantity J 
such that [A,J ] ≠ 0. 

• If the disturbance of J is absolutely prohibited, namely, if the 
object system has the isolated conserved quantity J, the 
measurement of A becomes impossible. This is the 
superselection rule. 

• The superselection rule is understood as a consequence of 
symmetry from a viewpoint of measurement theory. 

• We can overcome the superselection rule by introducing 
explicit or spontaneous symmetry breakings. 

• Isolated conservation laws and spontaneous symmetry 
breakings build the hierarchical structure of the nature. 
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The End 
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