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Plan of this talk

Introduction
A toy model: momentum superselection rule

Tool: von Neumann’s indirect measurement
model

Basic notions: isolated conservation law,
covariant indicator

Main theorem: we derive the superselection
rule from a conservation law in measurement
process.



Superselection Rule

e |:superselection charge
A :self-adjoint operator, AT = A
The superselection rule states
A ismeasurable = [A4,]] =0
By contraposition,
|A,]] # 0 = A is non-measurable
The superselection rule is a necessary condition

for a self-adjoint operator A to be a measurable
guantity.
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History of superselection rule

Wick, Wigner, Wightman (1952) noticed that not every
self-adjoint operator represents a physically
measurable quantity.

Y : Dirac field operator
1 1
These are self-adjoint but they are not measurable.
Ty, Yy ke
Charge density and current density are measurable.

Although the intensity of electron wave is measurable,
its phase is non-measurable.

We can observe an interference fringe of the electron wave but we cannot determine its phase.
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Univalence superselection rule

another derivation by Hegerfeldt, Kraus, Wigner (1968)

] = R(2m): rotation by 360 degree around any axis.
A measurable quantity A must satisfy

R(2m)TAR(2m) = A or equivalently, [4,]] =0
On the other hand, the Dirac spinor field y satisfies
RCm™WR2m) = -y,  RCmMWRC) = -yt

Thus the Dirac spinor field ¥ itself is not a measurable
quantity even though ¥ Ty is measurable.



How did they notice it?

Around 1950, physicists discussed definition of the
parity transformation of the Dirac field. It was not
uniquely defined but it had an ambiguity.

Parity transform: ¥(x,t) —» Mp(x,t) = e¥yOY(—x,t)
The phase factor e'? is not uniquely determined.

In 1952, WWW noted that the parity transformation of
the Dirac spinor is allowed to be unfixed since the Dirac
spinor itself is non-measurable.



Correspondence of mathematical
notion to physical observable

e Mathematical notion: self-adjoint operator
* Physical notion:

observable (measurable quantity)

Do they have one-to-one correspondence?

In the usual framework of quantum mechanics,
their one-to-one correspondence is assumed.



von Neumann’s argument (1932)

After showing that every observable is
representable by a self-adjoint operator, von
Neumann argued that it is appropriate to
assume that there is a physical observable
corresponding to each self-adjoint operator.

observable = (&?) self-adjoint: AT = 4

The superselection rule tells that this
assumption is not appropriate.

There is a self-adjoint operator that does NOT
correspond to any physical observable.



von Neumann, “Mathematical Foundations of
Quantum Mechanics,” Section V.2

HLE-LE-1E R (19574F) p.250

«;aﬁn;mmw_ EICR L TEBEBXRXEITILE—MERE
HE—EMNICHEEIEONBCLE, BL2DH-TLSEY
THAMN, TNITMAT, choDW G IE—x—THd, 7
Lhsd, T RTOBEBRKIIIS—MEARII|EICHEE
ISR ELTING, ERETZDHHBEALL. )

Original German expression by von Neumann (1932)

{... es ist zweckmassig anzunehmen, ...)»
English translation by Beyer (1955)

(... it is convenient to assume, ...)»
English translation by Wightman (1995)
(... it is appropriate to assume, ...)
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Other examples:
Not every self-adjoint operator
corresponds to observable

e Lorentz boost generators
e Dilatation generator
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For making a clear argument we
need a clear definition

e self-adjoint: mathematically well-defined
notion

e observable (something measurable): not clear

4

It is necessary to formulate the notion of
measurement.
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Toy model to help understanding of the
superselection rule

n particles in one-dimensional space
masses: mq, Mo, ..., My,
positions: xq, X5, ..., X,
momenta: pq,ps, ..., Pn

An apparatus has a meter observable M.

Time-evolution of the whole system is
described by a unitary operator U
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Indirect measurement model

e The object system (n-particle system) has a Hilbert space 9,
while the apparatus has a Hilbert space R.

e The initial state of the whole system is Y®¢& € HRK

 An observable A to be measured is a self-adjoint operator on
$, while a meter observable M is a self-adjoint operator on K.

* |nteraction between them is described by a unitary operator
U = e "t/ on the composite system HRK.

e The meter UTMU is read out by means of the Born probability

rule. . .
interaction

Object System Apparatus (observing system)
initial state Y € 9 initial state ¢ € K

observables A, B meter M — UTMU




Requirement

Suppose that we want to measure the position of the
center of mass of the particles:
i=1 MyX;

A=X =
i=1 1M

Assume that the total momentum of the particles is
conserved during the measurement process (isolated

conservation law):
n

] =P:= D, UTPU = P
=1

Does the meter moveas UTMU =M + X ?
Answer: It is impossible.



Proof

The total momentum of the particles P = P®1 and the
meter position operator M = 1Q®M on HRK commute
IP,M| =0

Since the time-evolution acts as an automorphim,
lUTPU, UTMU| = UT[P,M]U = 0

On the other hand, the momentum conservation and

the meter shift condition imply

lUTPU, UTMU| = [P,M + X] = [P, X] = —ih
These give a contradiction. In general, a quantity

A measurable in the sense UTMU = M + A must
satisfy [P, A] = 0.



General scheme which gives a rise of

superselection rule  definition of
interaction measurability

Object System \ Apparatus (observing system]

observable A covariant meter
M—UMU=M+A
isolated conserved
quantity ] — UTJU =]

A more general proof
is given in my paper.



Measurability

e Physically meaningful measurement requires
covariance between the quantity to be
measured and the quantity to be read out.

meter M . meter M -» M’
: quantity to be read é X _ ,
weight A - A
human weight 4 - ‘ cova.riance is necessary for
: quantity to be known - making meaningful
\/ \/ measurement.

e But the structure of interaction between the
object system and the apparatus may or may
not allow the covariance.
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Measurable/non-measurable quantities

The superselection rule associated to the momentum
conservation law demands any measurable quantity

A must satisfy [P, A] = 0, where P = };; p; is the total
momentum.

Measurable: relative coordinates
mixq{ + myXx,
m1 + mz

Non-measurable: absolute coordinates of the particle

n
-1 M X;
1=1""1'1
A = x,, A=

i=1 M,
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Symmetries / Superselection charges

e 21 rotation invariance / univalence
The Dirac spinor, which is not invariant under 2mn
rotation, is non-measurable.

e U(1) invariance / electric charge, baryon
number

The phases of matter waves of electron or neutron
are non-measurable.

e Notice: Photon number is not conserved,
hence, the phase of electromagnetic wave is
measurable.
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Paradox associated with Non-abelian
symmetry

For example, SO(3) rotation invariance implies
the conservation of angular momenta JxerJys Iz

which are noncommutative each other.

Hence the superselection rule prohibits the
measurements of angular momenta.

But, in actual experiments, we measure the spin
angular momenta of electrons or photons.

How is it possible?



Solution of the angular momentum paradox

The SO(3) rotation invariance is broken by introducing
external magnetic field (Zeeman effect or Stern-Gerlach
setting) for nuclei or electrons, polarization filter or
birefringent crystal for photons.

All of the measurements of angular momenta introduce
a coupling of the object system and the apparatus that
breaks the isolation of the system and allows exchange
of angular momenta between the two systems.

object spin external field
H=g9gS"L
H=gS$ B B [H,sﬁ]qto
[H,S] # 0

|H, S+ L] =0



Why we can measure rotationally non-
invariant quantities?

If the SO(3) rotation invariance is
preserved within a microscopic system,
we cannot measure any rotationally
variant quantity from outside.

However, actually we can measure it
since the rotation invariance is __
spontaneously broken at the macroscopic

scale. We can construct apparatus which
has a non-spherical shape. Thus, we can
apply rotationally non-invariant external
field on a microscopic system.



How can we overcome
the U(1) superselection rule?

The isolated conservation of the U(1) charge makes
measurements of gauge variant quantities impossible.

By breaking the isolation, we can make such a
measurement possible.

Example: superconductivity, Josephson junction

H=g9p:T0; +gp.T o,

Superconductor @1 = |lp,|etfr

I = <P1T€02 - €02T<P1

Cooper condensate
@ = |plet ¢

superselection rule %
prevents the measurement.

isolation is broken.
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Why the SU(3) color is invisible?

In QCD, colored quantities like quark and gluon fields
are non-measurable from outside of hadrons.
Moreover, since SU(3) is non-abelian, color charge itself
is non-measurable. If there are objects in which the
color symmetry are spontaneously broken, we can
measure their relative color difference.

Color
superconductor

PP 2

S i §>
superselection rule %
prevents the measurement. isolation is broken.

25



Uncertainty relation under a conservation law:
Wigner-Araki-Yanase-Ozawa theorem

A : observable to be measured

Apparatus

M : meter of the apparatus
. quantity of the object system

Ji:q ty ject sy M,J,, &

J> : quantity of the apparatus

U : unitary time-evolution interaction

) =Y Q € :initial state of the whole system

g(4)? = <.(2 ‘(UTMU — A)z‘ !2> : measurement error

a(J)? =(2|(J)?|2) — (2] J{]2)? : standard deviation
Assume UT(J; + ,)U =], + ],

] |<[A,]1]>|2
Theorem:  g(4)? > 002 10U
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Comparison of the WAY-Ozawa theorem
with the superselection rule

The WAY theorem:
The conservation of total charge FELEIEE
UT(Jy + DU =J1 + ), M, ], ¢

implies that a non-vanishing
error of the measurement £(4) interaction

is evitable.

Superselection rule: The isolated conservation law

UTJ,U =,
implies the impossibility of M — UTMU = M + A, that is, the
meter M cannot move covariantly to the object quantity A.

This is an extremal form of the error-disturbance uncertainty
relation.
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Accessible and Inaccessible Levels of the World

Macroscopic level symmetry brpaking at
— macroscopic|scale
isible
quantity A ::> More visible quantities
[ A

barrier by the
isolated Less isolated conservation laws
conservation law open thg window of measurementjand control

Invisible
quantity B

such that
|B,J] # 0

Microscopic level
28



Hierarchical structure of the nature

Underlying structure

An isolated

conservation law, that Quarks and Gluons
's, a superselectigg Hadrons and Nuclei
rule defines g

of two hieg

lon symmetry is brg

can observe or C8 chiral symmetry is broken
the underlying level :

from the overlying color symmetry is kept
level.

a picture inspired by P. W. Anderson’s “More is different” 59



Conclusion

The uncertainty relation tells that we cannot precisely

measure a quantity A without disturbing another quantity /
such that [4,/] # 0.

If the disturbance of /is absolutely prohibited, namely, if the
object system has the isolated conserved quantity /, the
measurement of A becomes impossible. This is the
superselection rule.

The superselection rule is understood as a consequence of
symmetry from a viewpoint of measurement theory.

We can overcome the superselection rule by introducing
explicit or spontaneous symmetry breakings.

Isolated conservation laws and spontaneous symmetry
breakings build the hierarchical structure of the nature.



The End
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