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Abstract. A two-dimensional ferromagnetic Ising system composed of ferrimagnetically
ordered chains with alternating spinand spins (S > 3) atoms is investigated by the use

of Ising spin identities and the differential operator technique, in order to clarify the magnetic
properties of bimetallic molecular-based magnetic materials. The correlated effective-field
approximation is used for the discussion. The numerical results of total magnetizdtion
and inverse susceptibility ~1 are obtained and discussed for the two systems Witk 1

and S = % Some unexpected features are observed in the temperature dependepcés of
when the crystal-field interaction constahton a spinS atom becomes negative, such as the
non-divergence of thg ~1 in the systems withl = —1.0.

1. Introduction

A number of experimental works in the area of molecular-based magnetic materials has been
stimulated in recent years and the magnetic properties, namely molecular magnetism, have
become an important focus of scientific interest. Among them, bimetallic molecular-based
magnetic materials in which two kinds of magnetic ion A and B regularly alternate have
exhibited particularly interesting phenomena. These materials reveal the magnetic properties
characteristic to the ferrimagnetic chains at high temperatures. At a transition temperature,
some of them, such as MnCu(pba-QH)O)s3, show a three-dimensional ferromagnetic
ordering of the ferrimagnetic chains and others, such as MnCu(pb&Hp8); - 2H,0,

exhibit a three-dimensional antiferromagnetic ordering of the ferrimagnetic chains. A perfect
ferrimagnetic chain has also been synthesized in a bimetallic molecular-based material, such
as MnCu(opbaPMSO)3 [1].

On the other hand, several quantitative approaches to the magnetic properties of a
ferrimagnetic chain have been discussed by the use of various theoretical methods (see [2]).
Very recently, one of the present authors (TK) has discussed that the magnetic properties of a
mixed spin Ising chain made up of two kinds of alternating magnetic atom, namelgsﬂpin-
and spinS (S > %) B atoms, can be obtained exactly by the use of the Ising spin identities
and the differential operator technique [3]. The exact initial longitudinal and transverse
susceptibilities of the system have been obtained in [4] and [5]. The thermodynamic
properties (internal energy, spin correlation functions and specific heat) of the system have
been solved exactly in [6]. In particular, when the crystal-field constamn a spinS B
atom is negative, the initial longitudinal susceptibility has shown a lot of new phenomena,

0953-8984/98/133003+15$19.5@C) 1998 IOP Publishing Ltd 3003



3004 T Kaneyoshi and Y Nakamura

depending on whether the value §fis an integer or a half-integer. The specific heat has
exhibited some characteristic (non-Schottky-type) features in the thermal variation, when
the value of D takes a large negative value. As far as we know, however, the magnetic
properties of the two-dimensional system composed of these Ising chains have not been
discussed.

The aim of this work is to study the magnetic properties of a two-dimensional
ferromagnetic system composed of mixed spin ferrimagnetic Ising chains within the
framework of the correlated effective-field approximation (CEFA) [7], since the CEFA
has reproduced the exact expressions of magnetic properties in é $pimg chain when
the two-dimensional spié- Ising system with two anisotropic exchange interactions is
decomposed into chains by cutting one of them [8]. In fact, the exact expressions of
magnetic properties in the mixed spin Ising chain [4] can be also derived from this
approach when the exchange interaction between nearest-neighbour chains is cut. The
exact formulation of the system is given in section 2. In section 3, the expressions of
the magnetic properties are discussed on the basis of the CEFA. The numerical results
for the phase diagram and the temperature dependences of total magnetization and initial
susceptibility are obtained and discussed in section 4.

2. General formulation

We consider a two-dimensional ferromagnetic Ising system composed of ferrimagnetic-
ally ordered chains with alternating sp@and spins (S > %) atoms described by the
Hamiltonian

z Q2 z 2 A 4 2
H=1J Zlui,jSiZJrl/Z,j - JlZ“i,j:“iH,j - JZZﬂf,jﬂi,ﬁl -D Z(Siz+1/2,j)
@j) ()] @) ()]
—-H Z(M?’j + S,'Z_;,_l/z’j) (1)
@)

where the sitesi(j) and ¢ + % j) represent the lattice points occupied by séiand spin-
S atoms respectively in thgth chain, u; ; takes the values oj:% and the spin operator

Si11/2,; can take the (2+ 1) values allowed for a spifi (S > %). The first terms sum over
only the nearest-neighbour pairs in the same chdif>0) andJ; (>0) are the intrachain
exchange interactionsl, (>0) is the interchain exchange interactiab.is the crystal-field
interaction constantH is an applied magnetic field. The schematic representation of the
system is described in figure 1. The total magnetizafityp of the system in an applied
field H is given by

My

Ton_i_mH (2)

with
OH = (I/L,Z,>H mpyg = (Siz+1/2,j>H (3)

where N is the total number of spié—atoms in the chains and- -)y denotes the thermal

average in the applied field. Note that in the following we write %)iﬁlﬂd spin$ atoms as

n; andS; when it is not necessary to specify the chain in which those atoms are involved.
As discussed in [4] and [6], the magnetizatiary in a chain can be obtained exactly in

a simple fashion by the use of Ising spin identifies and the differential operator technique:
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Figure 1. The spatial configuration of a two-dimensional ferromagnetic Ising system made up
of two kinds of alternating magnetic atom. The white circles denote A atoms Syith= %

and the black circles represent B atoms with= S (S > %). J, J1 and J, are the exchange
interactions.

my = (53 = cosit (%)Fs(x + H)lemo — 201% + 15,0 cosh(%)

x sinh(%’) Fy(x + H)lmo + 315, 1) i SINFP (%)FS(X +H)lo (4

wherea = JV andV = 9/dx is the differential operator. The functiaFi(x) depends on
the value ofS. The explicit expressions afs(x) are given in the appendix. In particular,
when H = 0, my reduces to

m = —20Fs(J) (5)
with
m = (S})o and o = (1o (6)

where(- - -)o represents the thermal average in zero field. For the transformation from (4) to
(5), it has been used that the functiBg(x) is an odd function of and also the mathematical
relation exga V)¢ (x) = ¢(x + @) has been applied. Thus, the total magnetizatirin

zero field is exactly given by

% = o[l — 2Fs(J)]. )

Now, the initial susceptibilityy of the present system is defined by

d ([ My doy ompy
== (== == — . 8
s [aH < N >Lzo (BH)HZO+ < oH )H=o ©
Differentiating (4) with H and then takingd = 0, we obtain
ompy . doy
—_— = BIA Al s Aol -2 — F
( 5 )H:O BlAL + 4(ui i, 1)0A2] < ¥ >H=O s(J) 9
with

Ay = 3[F2()) + F5(0)] Az = 3[F2(J) - FX0)] (10)
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where the functionFg(x) is defined by

oH
Substituting (9) into (8), the initial susceptibility is exactly given by

[iFS(x + H)} = BFi(x). (11)
H=0

d
x = (%) [L— 2F5(D)] + BLAL + 4uinid, oAz, (12)
H=0

As is understood from (7) and (12), it is necessary to calcwatéoy /0 H)y—o and
spin correlation functions (such &g;u;, 1)o) in zero field, in order to discuss the and
x of the present system. In particular, wheén = 0, the problem reduces to that of an
isolated ferrimagnetic Ising chain and the magnetic properties have been obtained exactly
in [4] and [6].

3. Formulation of magnetic properties

The magnetizatiowy is defined by
e Trus e PH
on = (Uj)n = Tre R

In order to calculatery, let us introduce the effective interactidrg_fff(H ) and the effective
field H,;; between a pair of spins in a chain defined by

> " expl-BJ (i + 1i,1)S; + BD(SH? + BHSE]
S

J

(13)

= AexpBI; (H) i g + BHepr (15 + 11, 1)] (14)
like [4,6,9, 10]. The expressions aﬁ'ff and chf(H) can be easily derived and are given

for §=1andS = g in [4-6]. Using (14), the Hamiltoniaf{ in (13) can be replaced by
the effective Hamiltoniartt. s, defined as

Moy = —JR(H) Y Y i i s — Hr Y pi; —Jo Yy pi iy (15)
ij 8 ij G.J)
with
Hg = H + 2H;}, Jr(H) = J1+ I3 (H). (16)
Thus, the investigation afy reduces to the problem of the two-dimensional sbifsing
ferromagnet with anisotropic exchange interactions, namely the intrachain interagtign
and the interchain interactios.

According to the Ising spin identifies and the differential operator technique, the
magnetizatioroy can be written exactly in the form

b . b
oy = (I'L,Z>H = <l_[ |:C0$h<§> +2H’§+5 SInh(E)]

§
X l_[ [cosh(%) + 25, sinh(%)]> f(x + Hg)li=0 a7
& H
whenb = Jr(H)V, ¢ = J,V and the functionf (x) is defined by

fx)= %tanh(§x> . (18)
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§ and s’ express respectively taking the nearest-neighbour sites in a chain and the sites in
different nearest-neighbour chains. Furthermore, the identity (17) is generalized to

. b . b
(giniyy = <g,- I1 [cosh<§> + 21, smh(E)}

8

<] [cosh(5> +2uly sinh(f)D £ + Hr)lso (19)
. 2 2)1/,

whereg; can take any function of the Ising variables as long as it is not a function of the
sitei.

At this point, let us introduce the decoupling approximation and the correlated
effective-field treatment for intrachain spin correlations, in order to calculate (17) and (19)
approximately. The reason is based on the following facts. Firstly, in order to derive the
exact expressions for magnetic properties in the ferrimagnetic Ising chain, the decoupling
approximation is introduced for the interchain spin correlations:

NIy

X U [cosh(%) + 20y sinh(% ]f(x + Hp)lr=o (20)

and

b . b
(gimilu = <gi l_[ [C05h<§> + 2045 Smh(z)p
k) H
X ]6_[ [cosh(%) + 20y sinh(%)]f(x + Hg)|r=0 (21)

whereg; is a function of spin% operators in the chains, such gs= u; ;. Next, in order
to treat the intrachain spin correlations of (20) and (21), let us introduce the correlated
effective-field treatment

Wivs = o +A(H)(; —on) (22)
since it has been proved that the exact expressions of magnetic properties in%alsip'gm-
chain can be derived from the approach [8]. In fact, we can obtain
(i giig)n = of +25G - of) (233)
(Minidn = o + g —of) (230)
for the spin correlations in a chain, when (22) is applied. Here, the correlated effective-field
parametei; can be determined by substitutigg= ;,; into (21) and using the relation

(23b), as discussed in [7].
Using (20) and (23), the magnetizatiom at H = 0.0 is given by

o =40(K1+ K2) + 160°(K3 + K4) + 1602%(3 — 0)K3 (24)
with
K1 = costt(c/2) sinh(bo/2) cosh(bo/2) f(x)]x—o

K, = costf(bo/2) sinh(c/2) coshc/2) f (x)]x—o 5)
K3 = sintf(bo/2) sinh(c/2) coshc/2) f (x)|x—o

K4 = sintf(c/2) sinh(bo/2) coshibo/2) f (x)|c—o
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wherebg = JxV with

Jp = Ji+ IS (H = 0). (26)

The correlated effective-field paramete(=iy—_o) at H = 0.0 can be determined from

(21) and (23) as follows.
02+ 13 — 0 = 1K1 +2[0% + 2%(3 — 0D)]K1 + 40%(K2 + K3) + 20%K,4

+802[0%22(} — )] Ka. (27)
Thus, the temperature dependences aind A can be determined by solving the coupled
equations (24) and (25) numerically.

The transition temperatufg of the two-dimensional system with = 0 can be obtained
by taking only the linear terms af in (24):

1=4K;1+ K») + 4°Ks. (28)
Here, the correlated effective-field parameterat T = T, is
Ae = tanh(%JR) (29)

with 8 = 1/kgT,, since (27) becomes the quadratic equation @fhen substitutingr = 0
and the physical solution is given by (29).

Now, in order to obtain the initial susceptibility of the present system, it is necessary
to calculate(doy /0 H)y—o in (12). By differentiating (20) withH and using the relation
(23q), it is given by

OHS,,
(aoH) _s [1 + z(—ff> ][As +40%(As + Ae) + 160°(As + 0% A7)
H=0 H=0

oH 4 oH
2(1 2 2 doH 2
+4) 7 = — 0% ) (Ag+40°AD] + 4| — [K1+ K7 + K3\
4 0H Jy_o
2 2 2 8}\.[-[ 1 2
+120°K4 4+ 1206°(1 — A7) K3] + 3200 K3| — - —0 (30)
0H Jy_o\4

with
Az = coslf(bg/2) costt(c/2)sech((8/2)x) |0
A4 = coslt(c/2) sintf(bo/2)secl((B/2)x)|x—o
As = cosh(c/2) sinh(c/2) coshbg/2) sinh(bo/2)seck((B/2)x)|x—o (31)
Ag = coslt(bo/2) sintt(c/2)seck((B/2)x) |0
A7 = sintf(bo/2) sintt(c/2)sech((B/2)x)|,—o.

Furthermore, one should notice that from the expressioﬂef;)‘. defined by (14) we can
obtain

Oy Fs(J 32
(W)H_O = —Fs(J). (32)

Using (21) withg; = u;,, and (23), the factor(dry /9 H)y—o in (30) is also given by
the following form

) =ﬂ[1—2Fs(J)]U1+4<aﬁ) Us (33)
H=0 aH H=0

oAy

2
(140 )<3H
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with
_2 _ %
01 01
where the coefficient®); (i = 1, 2, 3) are given by
01 =1—40(K1 + 40%K2)
Q2 = 0[A3A4 + 2A5{1 + 1% 4 40%(1 — 12)} + 402(As + A7)]
03 = 20[4(K2 + K3) 4+ 2K4(1 4+ 2?) + 2K1(1 — 1?) + 1602K4(1 — 2% — (1 —1)].  (35)
From (33) and (30), we obtain

Uy and Uy (34)

30’H i é _ Vz
(5)  =fun-2rula (36)

with
Vi=K1+ Ko + K322 + 120%K4 + 120%(1 — A?) K3 + 8o K3U>
Vo=As+46°(As+ Ae) + 160%(As + 07 A7)
+22(1 — 402 (As + 402 A7) + 3200 K3Us. (37)

Thus, the initial susceptibilityy of the present system is given, from (36), (12) and

(23b), by
Vo

1-4v;

where thes and in (38) are given by solving the coupled equations (24) and (27).
At this point, when the system is paramagneticoe 0 for T > T, the paramagnetic
susceptibility x - iS given by

+ BlA1L + Ax{A + 4021 — M)}] (38)

x = b= 26,00

Az + 2Ny
1—4(K1+ Ko + K3A2)

Xpara = 511~ 25T FBlALFAD] (39)

Wlt 1
4 N ( )

The x,qra €xhibits the divergence & = T, determined from (28). In particular, when

Jo = 0, we can easily prove that (39) reproduces the exact expression (or (12)) of the initial
susceptibility in an isolated ferrimagnetic Ising chain. Thus, the decoupling approximation

((20) or (21)) and the correlated effective-field treatment (22) derive the reasonable results
for the magnetic properties of the present system.

4. Numerical results

In this section, let us examine the magnetic properties of the two-dimensional ferromagnetic
Ising system composed of ferrimagnetically ordered chains by solving the relations given
in the previous sections numerically. In order to study them, the two valu§s mémely
S=1andS = % are taken here and the following parameters

J1 Jo D

ri y= d= 5 (41)

are used for the numerical analyses.

o=
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4.1. Phase diagrams

From (7), there may be a compensation temperéfurat which the total magnetizatiolf
reduces to zero even # 0. The compensation point in the system is exactly given by
1=2Fs(J). (42)
Let us first study the phase diagrams (the variations of the transition tempefatamd the
T,) by solving the relations (28) and (42) numerically.
Figure 2(A) and (B) shows the variations ©f and 7, as a function ofd for the two
values ofS, selecting the four typical sets of pair values {). The solid and dashed lines
represent respectively the and the7,. Accordingly, in order that a compensation point
may exist in the system with the fixed values of /), each solid curve must be higher
than the dashed curve. A compensation point can be obtained in the system when the value
of d is larger thard = —1.0. In particular, the relation (42) is equivalent to that in [10] for
p = 0.5 and the whole plots of (42) as a function dfare also given in figure 2 of [10]

for the two values ofS.

KT - 06

1
i
I
i
]
R
1
L]
i
]
I
]
1

Figure 2. The phase diagram7{ and 7,) in the (I, D) space for the two-dimensional
ferromagnetic Ising system composed of ferrimagnetically ordered chains, when the vdlue of
is selected a§ = 1in (A) or S = g in (B). The solid and dashed lines represent Theand

the 7, (or the relation (42)), respectively. In each figure, the four sets of pair vadyes) (are
selected for the numerical calculatiotw, ) = (0.0, 0.05) for the curve A,(0.5, 0.05) for the

curve B, (0.0,0.2) for the curve C and0.5, 0.2) for the curve D.



Low-dimensional molecular-based magnetic materials 3011

[

®)

T
— &

— 0.3

kk

§$=3/2

f...lo o

Figure 2. (Continued)

Comparing (A) and (B) of figure 2, a characteristic feature can be observed for the
behaviour of theT, in the system withw = 0.0, depending on whethe§ is an integer
(S = 1) or a half-integer § = g). When § = 1, the T, curves labelled A and C (or
o = 0.0) seem to be going to zero in the vicinity df= —1.0, although the values df,
could not be determined accurately belbyr'/J < 0.01 because of large numerical errors.
When § = g the T, takes a finite constant value far «< —1.0. The difference comes
from the following facts. Wher§ = 1 andd < —1.0, the spin of B atoms is in th& =0
state atT’ = 0 K. On the other hand, whef = g andd < —0.5, the spin of B atoms is
in the §; = i% state at7 = 0 K. In other words, the magnetization of the system with
S =1 andd < —1.0 should bes =m = 0.0 at7 = 0 K, since B atoms in a chain behave
like nonmagnetic atoms and no intrachain interaction connecting A atoms exists. When
a # 0.0, however, there exists a finite couplidg between a nearest-neighbour pair of A
atomss even forl < —1.0 and hence the behaviour of tig takes a form similar to that of

In figure 3, theT, versusy plots are given for the systems with= 1 andS = g
when the values of is fixed atd = 0.0 and the two values af are selected. In the region
of y < 0.1, theT, reduces rapidly to zero with the decreaseyoflt is consistent with the
prediction that the system withh = 0.0 is nothing but a collection of isolated Ising chains
and theT, must be zero.
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d
J

Figure 3. The variation ofT, in the (T, J2) space for the ferromagnetic system wiJ = 0.0,
when the four sets of pair values, (¢) are selected(S, «) = (1, 0.0) for the curve A,(1, 0.5)
for the curve A, (%, 0.0) for the curve B and%, 0.5) for the curve B

4.2. Magnetization and initial susceptibility

Let us now examine the thermal variations of the total magnetizatforan the initial
susceptibilityy in the two-dimensional ferromagnetic system composed of ferrimagnetically
ordered Ising chains by solving the coupled equations (24) and (27) numerically. As is
expected from the results of section 4.1, their temperature dependences will depend on
whether the value of is an integer § = 1) or a half-integer{ = g) and may exhibit a lot
of interesting features when the value dfbecomes negative. Accordingly, some typical
values ofa, y andd are taken from the phase diagrams in section 4.1.
Figure 4 shows the temperature dependencds/of(or o) (solid line), kpT x (dashed
line) andxl;}m (solid—dashed line) in the system wish= 1, « = 0.0 andy = 0.05, when
the typical values ofl are selected. In particulakz T x is plotted instead of, since it is
often used for the analyses of experimental data in molecular-based magnetic materials. In
the figure, thg M| and the inverse paramagnetic susceptibw;ylm of the systems labelled
A”, B and C (d = 1.0, d = 0.0 andd = —0.5) exhibit the standard features in the
thermal variations. ThézT x for B’ or C (d = 0.0 ord = —0.5) shows a broad minimum
in the temperature region @ > T, observed for the bimetallic molecular-based magnetic
materials [1, 2], exhibits divergence &at= T, and decreases rapidly to a constant value at
T = 0 K. For the systems with = —1.0 (curve D or D) andd < —1.0 (curve E), on the
other hand, some characteristic features can be observed in the magnetic properties.
Whend < —1.0, the total magnetizationV/| in the system withS = 1 anda = 0.0
is given by|M| = 0.0, since the spin operatdi;of B atoms is firmly fixed at the§; = 0
state in the low-temperature region and heace- m = 0 because/; = 0. Accordingly,
the kgT x in the system labelled’'Hd = —2.0) decreases monotonically from the high-
temperature region, shows a broad minimum and then exhibits divergence in the vicinity of
T = 0 K. For the critical value offi = —1.0 where the spin operator can change from the
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Figure 4. The thermal variations of the magnetic properties in the system $vithl, « = 0.0
andy = 0.05, when the value of is changed. The solid curves labelled A-C represent the
temperature dependences|8f|, whend = 1.0 (curve A),d = 0.0 (curve B) andd = —0.5
(curve C). But, solid curve D shows the temperature dependence iof the system with

d = —1.0 becauséM| = 0 for the whole temperature region. The solid—dashed curVesCA
denote the variation of inverse paramagnetic susceptibility in the systemdwithl.0 (curve
A”), d = 0.0 (curve B') andd = —0.5 (curve C). The dashed lines labelled-HE represent
the temperature dependencelof —1, when the value ofl is changedd = 0.0 for the curve B

d = —0.5 for the curve G d = —1.0 for the curve D, d = —2.0 for the curve E

S; = 0 state to theS; = +1 state atl’ = 0 K, the magnetizatiom: can takem = —1.0
andm = 0.0 with equal probability and it is given by the averaged valuenot —0.5.
Owing to this fact, the total magnetizatioW is always given byn = 0.0, although the
temperature dependence ofexhibits the normal behaviour, as depicted in figure 4. Such
a phenomenon is also expected from figure 2(A): whiea= —1.0, the relation (42) is
always satisfied and the compensation temperafris given by7, = 0. ThekgT x of

the system labelled 'D/d = —1.0) shows behaviour similar to that @f= —2.0 (curve E)

in the high-temperature region. However, it does not exhibit the divergence in the vicinity
of T =0 K but increases to a constant valueTat= 0 K. In particular, one should notice
that thekzT x in the system withd = —1.0 does not exhibit the divergence &t= T,
since theM is given by M = 0.0, being independent df for T < T, (or the relation (42)

is satisfied in (39)).

In figure 4, the parameter (or the J;) was fixed ate = 0.0 and the temperature
dependence of in the system withS = 1 andy = 0.05 did not express any unstable
feature, even whetl < —1.0. At this place, let us show one of the unexpected phenomena
in the x—T curve observed for the system with= 1, when the value of is given by a
finite value and the value af becomes smaller thath = —1.0.

In order to compare with the results of figure 4, figure 5 shows the temperature
dependences dfv/| and the inverse susceptibility~* in the system withS = 1, « = 0.5
andy = 0.05, selecting three values df namelyd = 0.0, d = —1.0 andd = —2.0. For
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Figure 5. The temperature dependences|df| (or o) and x 1 in the system with§ = 1,

a = 0.5 andy = 0.05, when the value of is changed. The curves A and C represent|té
for d = 0.0 andd = —2.0, respectively. The curve B shows the temperature dependeiaciof
the system withf = —1.0 becauséM| = 0 in the whole temperature region. The curvés@
represent the temperature dependenceg dfwhered = 0.0 (curve A), d = —1.0 (curve B)
andd = —2.0 (curve C). Notice that the dashed line labelled epresents the negative value
of x~1 (or |x~1|) in the system withi = —2.0 whenT < T..

the system withi = —1.0, the temperature dependencesofcurve B) is also plotted in the
future, since theM| is given by|M| = 0.0. The x ! labelled B (d = —1.0) also does not
exhibit the divergence af = T, like the corresponding curve @fz3 7 x in figure 4. The
temperature dependences|af| and x ! in the system withd = 0.0 (curves A and A
express features similar to those of figure 4. For the systemdvith—2.0, however, the
temperature dependence;of! (curve C) exhibits an unexpected behaviour at a temperature
belowT, (or the dashed line in the figure means thatthé becomes negative after showing
the divergence), although thé&/|-T curve labelled C shows the normal behaviour because
a = 0.5 and they ! takes the form expected fdt > 7.. The reason is as follows. When
d = —2.0, the spin operator of B atoms should be in §fe= 0 state atl’ = 0 K. But,
owing to J; # 0.0, the spin operator would like to be in tis¢ = &1 state. Because of the
competition, they ! may exhibit an unstable feature beldty, but the|M|/N takes the
value |[M|/N = 0.5 atT = 0 K, even though the decoupling approximation introduced in
(20) and (21) seems to be a good approximatiomfes 0.05.

The outstanding behaviour observed for thel-T curve labelled C(d = —2.0) in
figure 5 is expected to be observed only for the system with an integer$pinl) because

of the existence of ths; = O state. In fact, such a feature could not be found in the system
with a half-integer spin{ = %), as depicted in figure 6 where the* versusT curves in
the system withS = % a = 0.5 andy = 0.05 are plotted for five values f.

In figure 6, the temperature dependences$Msf and x —* in the system are plotted for
three values ofl (d = 0.0, d = —0.5 andd = —%). Whend > —0.5, the spin operator
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Figure 6. The temperature dependences|&f| and x 1 in the system withS = % a =05
andy = 0.05, when the value of is changed. The curves A—C represent thg—T curves
for d = 0.0 (curve A),d = —0.5 (curve B) andd = —% (curve C). The curves /AC show the
temperature dependences )of! in the system withd = 0.0 (curve A), d = —0.5 (curve B)
andd = —2 (curve C).

of B atoms is in theSj = i% state at7’ = 0 K and hence the saturation magnetization of
curve A is given by|M|/N = 1.0. At the critical value ofd = —0.5, the spin operator
takes theS; = :I:% state and thes; = :l:% state with equal probability and the saturation

magnetization of curve B is given Gy/|/N = 0.5, sincec = % andm = -1 atT =0 K.
Whend < —0.5, the saturation magnetization ef is given bym = —0.5, so the total
magnetization|M| of curve C starts to increase from zero Bt= T,, shows a broad
maximum belowl, and reduces to zero &t = 0 K. Because of this fact, the~! labelled
C' (d = —2) shows divergence whefi goes to zero.

In figure 7, only thex ~-T curves are plotted for the systems with= —1.0 (curve A)
andd = —2.0 (curve B). They do not exhibit any unstable features in the thermal variation,

in contrast to they ~1-T curve labelled C(d = —2.0) in figure 5, since thes; = O state

is not allowed in the system witli = g Finally, one should notice that tH(M|—T and

x =T curves in the system withi = g a = 0.0 andy = 0.05 take forms similar to those

of figure 6, although we will not show them.

5. Conclusions

In this work, we have investigated the magnetic properties of a two-dimensional
ferromagnetic Ising system composed of ferrimagnetically ordered chains within the
framework of the correlated effective-field approximation (CEFA) based on Ising spin
identities and the differential operator technique. As discussed in section 3, the CEFA
has derived the exact expressions of magnetization and initial susceptibility in [4] when the
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Figure 7. The temperature dependences;of! in the system withS = % o = 05 and

y = 0.05, when two negative values dfare selectedd = —1.0 for the curve A andl = —2.0
for the curve B.

interchain exchange interaction (@) is taken as/, = 0.0 in the system. In section 4.1,

the phase diagrams of the system have been examined numerically, selecting two values of
S(S=1andS = g). When the intrachain exchange interactibnis taken as/; = 0.0,
different features have been observed in figure 2 for the negative regidn dépending

on whether the value of is an integer § = 1) or a half-integer § = %), although the
transition temperature of each system, as depicted in figure 3, reduces rapidly to zero with
the decrease af,. In section 4.2, we have examined the temperature dependences of total
magnetization and initial susceptibilityy in the system with§ =1 or S = % particularly
selecting a weak interchain exchange interaction){oe 0.05), in order to simulate the
experimental data of bimetallic molecular-based magnetic materials [1]. In the process, two
outstanding phenomena have been obtained inytheversusT curves. (i) They ! of

the system withd = —1.0 does not exhibit divergence & = T., which phenomenon is
observed in both systems with = 1 andS = %’ The reason comes from the fact that

for the special value off the relation (42) is always satisfied in (39). (i) When# 0.0,

the x ! in the system withS = 1 andd < —1.0 becomes unstable (or negative) in the
temperature region of' < T,., although the|M|-T curve shows the normal behaviour.
Such a fact has been shown in figure 5 and discussed there. But, the phenomenon has not
been observed in thg~! of the system withS = % as shown in figure 6. Thus, it may be
interesting to study further whether the decoupling approximation introduced in (20) and
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(21) is not appropriate for the system with= 1 andd < —1.0.

From the experimental point of view, the data of bimetallic molecular-based magnetic
materials may be described by the Heisenberg model better than the present Ising model.
Actually, Heisenberg models and Heisenberg Hamiltonians for such systems have in fact
been studied in 1D using density matrix renormalization group (DMRG) [11, 12], quantum
Monte Carlo and variational methods [13]. At the present stage, furthermore, it is not clear
why type of interchain exchange interactions is mainly acting in the materials to show the
three-dimensional ferromagnetic (or antiferromagnetic) ordering at a very low temperature.
In this work, therefore, we have assumed that only the interchain exchange interaction
Jo between nearest-neighbour A atoms is dominant for the ferromagnetic ordering. Even
though some faults are included for the analyses of the experimental data, the results obtained
in this work are extremely interesting. As shown in figure 4, the experimental data may be
explained quantitatively from the present study.

Finally, we have here studied the two-dimensional ferromagnetic Ising system composed
of ferrimagnetically ordered chains. The present formulation can be also extended to the
case of the two-dimensional antiferromagnetic Ising system made up of ferrimagnetically
ordered chains, although it is more complicated than the present one. The problem will be
discussed in a separate work.

Appendix

The functionFg(x) introduced in (4) is given by

_ 2 sinh(Bx)
~ 2coshBx) + exp(—BD)

Fs(x) (A1)
for § =1,

13 sinh(3 Bx) + exp(—2BD) sinh((8/2)x)
2 coshi3px) + exp(—28 D) cosh(B/2)x)

for § = 2, and so on.

Fg(x) (A2)
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