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Time correlation functions are studied for some conservative chaotic systems with both discrete and
continuous time dynamics. For low-dimensional systems a memory function formalism on a
microcanonical ensemble turns out to be able to yield useful information on the time correlation
function and its energy dependence. ¥©98 American Institute of Physics.
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I. INTRODUCTION memory coefficients with some lowest ordéop to third or
at most fourth have been used. This is becausenhie order

Equilibrium time correlation functiofTCF) has been coefficient usually(roughly speaking requires the knowl-
playing a fundamental role in statistical mechanics of manyedge of theN-body equilibrium correlations which are not
body systems. The linear response théanymore generally known even approximately fa¥ larger than 3. In our few-
the fluctuation-dissipation theorefnshow that how various body or low-dimensional systems we can calculate higher
observed quantities such as transport coefficients and the@rder coefficients relatively easily especially when the en-
spectra measured by spectroscopic techniques are expressdy of the system or the nonlinearity parameter is small and
in terms of the TCFs. the integration in the phase space does not demand heavy

Recently the TCF gathers new interest in connectiorcomputations.
with chaosdynamics, especially in systems with a few de- After some general discussions on the relation between
grees of freedom. It is observed for many nonlinear Hamil-the TCF and the memory functiérit*2we consider explic-
tonian systems that dynamics becomes more chaotic and tlity the standard mapand the Nelson systefhas examples
power spectra of the TCFs change from sharp line spectra tof discrete-time and continuous-time dynamical systems, re-
grassy or continuous ores as the(total) energy and/or spectively. Numerical results for the TCF show that the
strength of nonlinearity increase. A projection operatormemory function approach together with our method to cal-
method*® clearly shows that effects of a system as a heatulate the moments in the microcanonical ensemble can
bath is concisely represented in terms of the appropriate TCField useful information on dynamical properties of low-
of the system and from this viewpoint also, the TCF and itsdimensional nonlinear systems.
dependence on energy are an interesting object to study
theoretically'®

The TCF, which is defined below by E@3) for map | tcr FOR DISCRETE-TIME DYNAMICS
dynamics and by Eq.13) for continuous-time dynamics, is
usually calculated in computer experiments from a long time  First we consider conservative map dynamics governed
trajectory of system dynamics which is obtained by solvingby
equation of motion. When the system is not ergddiane
has to solve the equation of motion under many initial con- Xn+1= G(Xn), @)
ditions (with the same energy if we are to calculate the TCRyhere x, denotes the phase point at timé=n
based on a microcanonical ensembdend the TCF is ob- (n=0,1,2,...) andG satisfies|dG(x)/dx|=1. Equation of
tained as the average of the TCF calculated for each trajegnotion (1) is equivalent to the following Frobenius—Peron
tory. f%s expected this is a rather tedious step to calculate thequation for the distribution functiop(x;n),3
TCF™

In_order to calculate the TCF of Iow-d|mgn3|onal con- p(x;n+1)=f dx'p(x":n) 8(x—G(x')=LTp(x:n). (2
servative systems, we apply the memory function formalism
with use of a newly developed algorithm, which enables usryo TCF¢(n) of the dynamical variablé(x) is defined by
to compute higher order memory coefficients. Here we note
that the memory function formalism is originally developed
for the TCF for many-body condensed mattérdand the ¢A(n):f dXoPed Xo) A(Xo) A(N|X0) =(A(0)A(N)), (3)
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where pe(Xo) denotes the equilibrium distribution for the
initial phasex, and

A(n|Xg)=A(G(G...(G(Xp))...)=L"A(xq), 4

with G appearing times. The operators’ in Eq. (2) andL
in Eq. (4) are seen to satisfy

J dxf(x)L*g(x)=f dxg(x)Lf(x), (5)

for arbitrary functionsf(x) and g(x).'! The stationarity of
the TCF, (A(m)A(n+m))=(A(0)A(n)) readily follows
from the relationL"pe(X) = pe(X) satisfied by an equilib-
rium distribution.

The projection operator technique leads to the exact

Langevin-type equatidh
n—-1
A(nlxo)= 2, da(MA(N=1-mix,)

+f(n|xy) (n=1), (6)

where the memory functiomy,(m) and the random force
f(n|x,) are defined by

Pa(m) = ((LT(m|X0))A(X0))/(A?), )

f(n|xo)=(QaL)"A(Xo), (8)

with P,=1-Q, denoting the projection operator onto the
variable A, P,B=(BA)A/(A?). Since the random force
f(n|xp) is orthogonal toA(xo), that is,{(A(Xg)f(n|xy))=0
due to the projection operat@, in Eqg. (8), we immediately
obtain from Eqs(3) and(6),
n-1

$an)= 2 (M) ga(n—1-m). ©)
If we introduce a generating functic;yﬁA(z)Efﬁ’:quA(n)z“
and a similarly definedss(z), Eq. (9) is expressed &s?

ba(2)=Pa0)/[1—2¢a(2)]. (10

The memory functionya(n) provides us with a simple
picture on how the TCRp,(n) behaves as a function of
(discrete timet=n. That is, if the memory is short-lived and
we have ¢a(n)=0 for n=1, the TCF becomes a simple
exponential functionpa(n) = a"pA(0) with a= (0).** It
is easily confirmed from the inverse relatiog(n)
=(2mi) " dzpa(2)/z"*? that the TCF is generally ex-
pressed as the sum &l exponential functions when the
memory ,(m) is (nearly zero form=M. We notice how-
ever from Eq.(10) that the TCF does not decay to zero, due
to the presence of the pole at1 in the inverse formula
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wherex(t) denotes the phase point at tihandV satisfies
V-V(x)=0 since we consider a conservative system. The
distribution functionp(x;t) evolves in time according to

ap(x;t)/ot=—V-[V(x)p(x;t)]=LTp(x;t). (12

As in the case of the discrete-time dynamics, the T&t)
of the dynamical variabl&(x(t)) is defined by

¢A(t):f dXoPed Xo0) A(X0) A(t]X) =(A(0)A(1)), (13)

where pe{Xo) denotes the equilibrium distribution for the
initial phasexy and

A(t|x0)sf dxA(x)exp(LTt) 8(x—xg) = exp(Lt)A(Xo).
(14

The L' in Eq. (12 andL in Eq. (14) are related with each
other through Eq(5) as before. The stationarity of the TCF,
(A(t")A(t+1"))y=(A(0)A(t)) readily follows from the rela-
tion LTpeq(x)zo for an equilibrium distribution. By putting
t'=—t, we see that the TCF is even ing(t) = ¢pa(—1).

The short-time or Taylor expansion of the TCF is ob-
tained from Eqgs(13) and(14) as

$a(t)= 2, cat?(2n)1, (15
n=0

with the coefficientcn=(—1)“fdx0pe4xo)[L“A(x0)]2. For

continuous-time dynamics we use, instead of the

transformation, the Laplace transformation

Sa(s)= f

0

dtga(t)e st=> ¢, /s2"* 1. (16)

0

By iteratively employing the memory function formalism,

we can expresgb(s) in the continued fraction expansion

(CFB) of the infinite order

Ba(8)=Bol{s+{By/{s+{Bo/{s+{Bs/{s+}1}, (17

where thenth order coefficienB,, can be expressed in terms
of {cq,....Cn}.1?

Let us suppose that we could calculate the coefficients
{B,} up ton=M. First we rewrite Eq(17) as
®A(9)=Bo/{st{By /{5t +{Bu_o/{s+Qs)} 1} (18
by introducing the 1 —1)th order memory function

Q(s)=By_q/{s+By /[{s+---}---}. (19)

Our Mth order Gaussian approximation in the time space

above, when the nonzero part of the memory function satiszgsists of

fies [N -5 wa(m)=1. We will see some examples of this later
for the standard map.

lll. TCF FOR CONTINUOUS-TIME DYNAMICS

Next we consider dynamics governed by a differential
equation

dx/dt=V(x), (11

Q(t)=0g(t)=By_, exd —Byt?/2], (20)
or in thes-space,
06(s)= By 1[27/By]*2
X exf s/(2By) Jerfd s/ (2By) ¥21]. (21

It is noted that Eq(20) gives the correct short-time expan-
sion of Q(t) up tot?. Since the Gaussian approximati@o)
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or (21) formally takes into account effects of higher order and the equilibrium distribution is taken to be uniform in this
terms (1>M), it is considered to be better than simply set-region. We can easily calculate the TGk (n) up ton

ting B,=0 for n>M.2 (=20), by numerically performing the integration in E8§).
It is noted however that & becomes largé(n|x,) depends
IV. NUMERICAL RESULTS on the initial phase, rather sensitively and this tendency is

To illustrate how the formalism developed above may beenhanped as the order become_s large. Thus in order to
applied to the TCF of low-dimensional nonlinear systemslumerically calculatepa(n) precisely, we must choose the

we consider the standard nidf (the Nelson systeff) as a mesh sizeAx,= (A 6,,Ap,) for discretization of the integral

typical model in discretécontinuoug-time dynamics. in Eq. (3) small enoug}.‘(SZTr/}O“ for n<20).
The memory function(7) with A(xg) =cosfy) is shown
A. TCF for the standard map for small and large values & in Figs. 1a) and Xb), respec-
As a conservative discrete-time system we consider thévely. The x(n) seems to decay to zero for largeirre-
standard map spective of theK values. From Fig. @) it is seen that the
_ B i TCF ¢4(n), corresponding taya(n), does not necessarily
On+1=0nt Py Por1=Pnt K sin(fn.q). (22 49 to zero for larger when the nonlinearity parametiris

It is well-known that as the nonlinearity parametérbe- small and chaotic or mixing effects are small accordingly.
comes large the system behaves more and more chaoticalysymptotic behavior is generally rather difficult to ascertain
with the last KAM torus disappearing aroutd=1.1° Here  from numerical analyses. However from Figéa)3and 3b),

we consider the variablg®,,,p,} to be in the rang€0,2m)  which depict WA(N)=3}_oa(m), we clearly see that
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¥ A(n) approaches 1 for small valueskfand this means the and our main interest is centered on how the TCF of the
nondecaying or nonergodic behavior of the TCF as explainedl€lson system changes as the enekgypf the system is
below the line of Eq(10). ForK<K.=4 it is expected from changed. It is known from numerical experiments that for
numerical calculations that the TCF does not decay to zer&>0.3 dynamics is wholly chaotic and gradually it crosses
with the asymptotic value,(n=s) monotonically decreas- OVer to fairly irregular to harmonieegula asE decreases
ing to zero aK approache . Due to the presence of the Dir&function in the integral in
Eq. (13) we need to perform integration in a thr@et foun
dimensional spac¥.

Numerically we calculate the coefficien{8,} in Eq.

As a conservative continuous-time system we consider é17) up to n=M(=20), based on the well-known formula
Nelson model with Hamiltonian Bn={((f)2)/{(f,_1)?) with f, thenth order random forc&

_ and employ théMth order Gaussian approximation E¢20)

H(x)=(pi+p3)/2+ (y,—yi/2)*+0.05/5=Kg+ Vg, or (21). We now briefly comment on how theh order ran-
dom forcef,, can be obtained by solving a difference equa-
where the first termKg on the right-hand side of E23)  tjon. Since Hamiltonian(23) consists of polynomials only,
denotes the kinetic part of the total energy. As the equilibthe equations of motion are also of polynomial forms. From
rium distributionpeg(X) (x={P1,P2,y1.y2}), We take a mi- this fact the random force§f,} is expressed as the sum of
crocanonical ensemble polynomials, that is, fn:2|1,|2,|3,|4C|(f?|2,|3,|4plllp|22y|13y|24

Ped X) = 6(H(X)—E), (24)  with 1;=0. We consider the cas&(x)=y,, for which f;

B. TCF for the Nelson model
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=dy,/dt=p,, thus C{*) =8,.16). 00090 and the aroundw=1/\/(10)=0.316, which is obtained from E¢3)
[1dp.05.0, 7 €11,191,,0015,001,, ; N .
higher-order Coefﬁciencl(”)l .. 1.(n=2) is determined re- N the harmonic limit. As expected numerical results are de-
1727374

cursively from c(n-1) where effects of the projection pendent on thé-value we adopt in thdMth order Gaussian
11205 0s . e approximation, Eqs(18) and (20). In Fig. 5 we show the
operator are to be properly taken into account. The difficulty ' )
. . . : . spectra forE=0.01 when we seM =19 andM=20. It is
in the numerical calculations is that as the endfggcreases d that th froM =17 andM =19 G .
the phase space is extended and at the same time we mUgite t_ at t_ e two spectra from =17 andM = aussian
use the small mesh sizes fap,, Ay,, andAy, since the approximations(also the two spectra froflM =18 andM

higher-order random force consists of higher-order polyno==20 Gaussian approximationare almost indistinguishable

mials. This situation is qualitatively similar to what we en- ON the scale of the figure. We see from Fig. 5 that the spec-

became large. Accordingly we had to restrict our calculatiordnd the TCF, corresponding to the spectrum, shows damped

of the TCF of the Nelson system <0.01. oscillation decaying to zero fde=60 in contrast to the TCF

In Fig. 4 we show the power spectruBu(w) which is  for E=0.001 which decays to zero fo=2000. In leaving
obtained from?;ﬁA(s) by this section it is noted that strength of nonlinearity, which
~ . can be estimated with the fractibéof chaotic phase-space, is

Galw)=real part of gx(s=iw), (29 rather weak for the two cas&=0.001 andE=0.01 studied

for A=y, for E=0.001. In this case dynamics is seen to beabove. Here we estimatefrom the surface of the section
rather regular and we observe nearly harmonic oscillatiorand/or with use of a method of Henon—Heifésn which
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one takes many phase-point pairs, very close each other iniained as the average over this ensemble. In this case it is not
tially, and count the fraction of pairs which moves far apartrealistic to rely on trajectories in order to obtain the TCF.
with time. The fractionf is about 70% forE=0.1 (strong The motivation to apply the memory function formalism to
nonlinearity but 2% and less than 0.1% f&=0.01 andE calculate the TCF stemmed from our needs to avoid the use
=0.001, respectively. In view of the fact that the TCF couldof many long-time-solutions of differentiglor difference

be calculated in a strongly nonlinear region for the standar@quations. Our approach enables us to calculate the TCF ex-
map, we may say that our approach to the TCF or its speactly in the short-time region and approximately in the long-
trum has more severe restrictions for the continuous-time¢ime one.

dynamics compared to discrete-time one. The final remark is concerned with the autoregressive
moving-average (ARMA) model for the time-series
V. REMARKS predictiort®
In this paper we studied the TCF for low-dimensional p q p

systems. From a standpoint of numerical calculations of the An=2 \IfiAn,l,iJrE eign,iEZ VA1 +Fq,
TCF, it is usually obtained from a long trajectory of system =0 =0 =0 26
dynamics. In other words it is necessary to first solve equa- (26)
tion of motion for long time in order to calculate the TCF. where{¥;}(0<i<p) and{0;}(0<j=q) together withp
However, as stressed beford, is sometimes necessary to andq are parameters of the model afiddenotes the Gauss-
consider ensemble of trajectories and the TCF should be ollan white noise with zero mean and unit variance. First we

3 FIG. 5. The same as Fig. 4 f&=0.01 calculated un-
Gﬁ der theM =20 (denoted by a solid lijeand M =19

(denoted by a dotted lingGaussian approximations.
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note the similarity of Eq.(6) to Eq. (26). Actually if the
memory ,(m) vanishes whem>p, we can show that the
random forcef (n|x,)(n>p) is expressed aB, in Eq. (26)
with g=p. This means that the ARMA model with the spe-
cial conditionp=q can be derived from a dynamical model
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