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Time correlation functions in low-dimensional conservative chaotic
systems: A memory function approach
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Time correlation functions are studied for some conservative chaotic systems with both discrete and
continuous time dynamics. For low-dimensional systems a memory function formalism on a
microcanonical ensemble turns out to be able to yield useful information on the time correlation
function and its energy dependence. ©1998 American Institute of Physics.
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I. INTRODUCTION

Equilibrium time correlation function~TCF! has been
playing a fundamental role in statistical mechanics of ma
body systems. The linear response theory1 or more generally
the fluctuation-dissipation theorems2 show that how various
observed quantities such as transport coefficients and
spectra measured by spectroscopic techniques are expr
in terms of the TCFs.

Recently the TCF gathers new interest in connect
with chaosdynamics, especially in systems with a few d
grees of freedom. It is observed for many nonlinear Ham
tonian systems that dynamics becomes more chaotic and
power spectra of the TCFs change from sharp line spectr
grassy or continuous ones3–7 as the ~total! energy and/or
strength of nonlinearity increase. A projection opera
method8,9 clearly shows that effects of a system as a h
bath is concisely represented in terms of the appropriate T
of the system and from this viewpoint also, the TCF and
dependence on energy are an interesting object to s
theoretically.10

The TCF, which is defined below by Eq.~3! for map
dynamics and by Eq.~13! for continuous-time dynamics, i
usually calculated in computer experiments from a long ti
trajectory of system dynamics which is obtained by solv
equation of motion. When the system is not ergodic,4,5 one
has to solve the equation of motion under many initial co
ditions ~with the same energy if we are to calculate the T
based on a microcanonical ensemble! and the TCF is ob-
tained as the average of the TCF calculated for each tra
tory. As expected this is a rather tedious step to calculate
TCF.4,5

In order to calculate the TCF of low-dimensional co
servative systems, we apply the memory function formalis8

with use of a newly developed algorithm, which enables
to compute higher order memory coefficients. Here we n
that the memory function formalism is originally develop
for the TCF for many-body condensed matters2,8,9 and the
6550021-9606/98/109(16)/6557/7/$15.00
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memory coefficients with some lowest orders~up to third or
at most fourth! have been used. This is because theNth order
coefficient usually~roughly speaking! requires the knowl-
edge of theN-body equilibrium correlations which are no
known even approximately forN larger than 3.2 In our few-
body or low-dimensional systems we can calculate hig
order coefficients relatively easily especially when the e
ergy of the system or the nonlinearity parameter is small
the integration in the phase space does not demand h
computations.

After some general discussions on the relation betw
the TCF and the memory function,8,11,12we consider explic-
itly the standard map3 and the Nelson system13 as examples
of discrete-time and continuous-time dynamical systems,
spectively. Numerical results for the TCF show that t
memory function approach together with our method to c
culate the moments in the microcanonical ensemble
yield useful information on dynamical properties of low
dimensional nonlinear systems.

II. TCF FOR DISCRETE-TIME DYNAMICS

First we consider conservative map dynamics gover
by

xn115G~xn!, ~1!

where xn denotes the phase point at timet5n
(n50,1,2,...) andG satisfies u]G(x)/]xu51. Equation of
motion ~1! is equivalent to the following Frobenius–Pero
equation for the distribution functionp(x;n),3

p~x;n11!5E dx8p~x8;n!d~x2G~x8!![L†p~x;n!. ~2!

The TCFfA(n) of the dynamical variableA(x) is defined by

fA~n!5E dx0peq~x0!A~x0!A~nux0![^A~0!A~n!&, ~3!
7 © 1998 American Institute of Physics
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where peq(x0) denotes the equilibrium distribution for th
initial phasex0 and

A~nux0![A(G~G...~G~x0!!...![LnA~x0!, ~4!

with G appearingn times. The operatorsL† in Eq. ~2! andL
in Eq. ~4! are seen to satisfy

E dxf ~x!L†g~x!5E dxg~x!L f ~x!, ~5!

for arbitrary functionsf (x) and g(x).11 The stationarity of
the TCF, ^A(m)A(n1m)&5^A(0)A(n)& readily follows
from the relationL†peq(x)5peq(x) satisfied by an equilib-
rium distribution.

The projection operator technique leads to the ex
Langevin-type equation11

A~nux0!5 (
m50

n21

cA~m!A~n212mux0!

1 f ~nux0! ~n>1!, ~6!

where the memory functioncA(m) and the random force
f (nux0) are defined by

cA~m!5^~L f ~mux0!!A~x0!&/^A2&, ~7!

f ~nux0!5~QAL !nA~x0!, ~8!

with PA[12QA denoting the projection operator onto th
variable A, PAB[^BA&A/^A2&. Since the random force
f (nux0) is orthogonal toA(x0), that is, ^A(x0) f (nux0)&50
due to the projection operatorQA in Eq. ~8!, we immediately
obtain from Eqs.~3! and ~6!,

fA~n!5 (
m50

n21

cA~m!fA~n212m!. ~9!

If we introduce a generating functionf̃A(z)[*n50
` fA(n)zn

and a similarly definedc̃A(z), Eq. ~9! is expressed as8,11

f̃A~z!5fA~0!/@12zc̃A~z!#. ~10!

The memory functioncA(n) provides us with a simple
picture on how the TCFfA(n) behaves as a function o
~discrete! time t5n. That is, if the memory is short-lived an
we havecA(n)50 for n>1, the TCF becomes a simpl
exponential functionfA(n)5anfA(0) with a5cA(0).14 It
is easily confirmed from the inverse relationfA(n)
5(2p i )21*dzf̃A(z)/zn11 that the TCF is generally ex
pressed as the sum ofM exponential functions when th
memorycA(m) is ~nearly! zero form>M . We notice how-
ever from Eq.~10! that the TCF does not decay to zero, d
to the presence of the pole atz51 in the inverse formula
above, when the nonzero part of the memory function sa
fies*m50

M21cA(m)51. We will see some examples of this lat
for the standard map.

III. TCF FOR CONTINUOUS-TIME DYNAMICS

Next we consider dynamics governed by a differen
equation

dx/dt5V~x!, ~11!
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wherex(t) denotes the phase point at timet andV satisfies
“–V(x)50 since we consider a conservative system. T
distribution functionp(x;t) evolves in time according to

]p~x;t !/]t52“•@V~x!p~x;t !#[L†p~x;t !. ~12!

As in the case of the discrete-time dynamics, the TCFfA(t)
of the dynamical variableA(x(t)) is defined by

fA~ t !5E dx0peq~x0!A~x0!A~ tux0![^A~0!A~ t !&, ~13!

where peq(x0) denotes the equilibrium distribution for th
initial phasex0 and

A~ tux0![E dxA~x!exp~L†t !d~x2x0!5exp~Lt !A~x0!.

~14!

The L† in Eq. ~12! and L in Eq. ~14! are related with each
other through Eq.~5! as before. The stationarity of the TCF
^A(t8)A(t1t8)&5^A(0)A(t)& readily follows from the rela-
tion L†peq(x)50 for an equilibrium distribution. By putting
t852t, we see that the TCF is even int, fA(t)5fA(2t).

The short-time or Taylor expansion of the TCF is o
tained from Eqs.~13! and ~14! as

fA~ t !5 (
n50

`

cnt2n/~2n!!, ~15!

with the coefficientcn5(21)n*dx0peq(x0)@LnA(x0)#2. For
continuous-time dynamics we use, instead of thez-
transformation, the Laplace transformation

f̃A~s!5E
0

`

dtfA~ t !e2st5(
0

`

cn /s2n11. ~16!

By iteratively employing the memory function formalism
we can expressf̃A(s) in the continued fraction expansio
~CFE! of the infinite order

f̃A~s!5B0 /$s1$B1 /$s1$B2 /$s1$B3 /$s1¯%¯%, ~17!

where thenth order coefficientBn can be expressed in term
of $c0 ,...,cn%.

12

Let us suppose that we could calculate the coefficie
$Bn% up to n5M . First we rewrite Eq.~17! as

f̃A~s!5B0 /$s1$B1 /$s1¯1$BM22 /$s1Ṽ~s!%¯% ~18!

by introducing the (M21)th order memory function

Ṽ~s![BM21 /$s1BM /$s1¯%¯%. ~19!

Our M th order Gaussian approximation in the time spa
consists of

V~ t !.VG~ t ![BM21 exp@2BMt2/2#, ~20!

or in thes-space,

ṼG~s!5BM21@2p/BM#1/2

3exp@s2/~2BM !#erfc@s/~2BM !~1/2!#. ~21!

It is noted that Eq.~20! gives the correct short-time expan
sion ofV(t) up to t2. Since the Gaussian approximation~20!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. ~a! The memory functioncA(n) for A
5cos(p) for K50.1 ~denoted by a solid line!, 0.5 ~de-
noted byL!, and 0.9~denoted by1!. We note that
cA(n) is defined for zero and positive integern with the
line for guide of the eyes.~b! The same as~a! for K
52.0 ~denoted by a solid line!, 6.0~denoted byL!, and
10.0 ~denoted by1!.
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or ~21! formally takes into account effects of higher ord
terms (n.M ), it is considered to be better than simply se
ting Bn50 for n.M .2

IV. NUMERICAL RESULTS

To illustrate how the formalism developed above may
applied to the TCF of low-dimensional nonlinear system
we consider the standard map3,15 ~the Nelson system13! as a
typical model in discrete~continuous!-time dynamics.

A. TCF for the standard map

As a conservative discrete-time system we consider
standard map

un115un1pn , pn115pn1K sin~un11!. ~22!

It is well-known that as the nonlinearity parameterK be-
comes large the system behaves more and more chaoti
with the last KAM torus disappearing aroundK51.15 Here
we consider the variables$un ,pn% to be in the range~0,2p!
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and the equilibrium distribution is taken to be uniform in th
region. We can easily calculate the TCFfA(n) up to n
(.20), by numerically performing the integration in Eq.~3!.
It is noted however that asK becomes largeA(nux0) depends
on the initial phasex0 rather sensitively and this tendency
enhanced as the ordern becomes large. Thus in order t
numerically calculatefA(n) precisely, we must choose th
mesh sizeDx05(Du0 ,Dp0) for discretization of the integra
in Eq. ~3! small enough~<2p/104 for n<20!.

The memory function~7! with A(x0)5cos(p0) is shown
for small and large values ofK in Figs. 1~a! and 1~b!, respec-
tively. The cA(n) seems to decay to zero for largen irre-
spective of theK values. From Fig. 2~a! it is seen that the
TCF fA(n), corresponding tocA(n), does not necessarily
go to zero for largen when the nonlinearity parameterK is
small and chaotic or mixing effects are small according
Asymptotic behavior is generally rather difficult to ascerta
from numerical analyses. However from Figs. 3~a! and 3~b!,
which depict CA(n)[Sm50

n cA(m), we clearly see that
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. ~a! The normalized TCFfA(n)/fA(n50) for
A5cos(p) for K50.1 ~denoted by a solid line!, 0.5 ~de-
noted byL!, and 0.9~denoted by1!. ~b! The same as
~a! for K52.0 ~denoted by a solid line!, 6.0~denoted by
L!, and 10.0~denoted by1!.
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CA(n) approaches 1 for small values ofK and this means the
nondecaying or nonergodic behavior of the TCF as explai
below the line of Eq.~10!. ForK<Kc.4 it is expected from
numerical calculations that the TCF does not decay to z
with the asymptotic valuefA(n5`) monotonically decreas
ing to zero asK approachesKc .

B. TCF for the Nelson model

As a conservative continuous-time system we consid
Nelson model with Hamiltonian

H~x!5~p1
21p2

2!/21~y22y1
2/2!210.05y1

2[KE1VE ,
~23!

where the first termKE on the right-hand side of Eq.~23!
denotes the kinetic part of the total energy. As the equi
rium distributionpeq(x)(x5$p1 ,p2 ,y1 ,y2%), we take a mi-
crocanonical ensemble

peq~x!5d~H~x!2E!, ~24!
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and our main interest is centered on how the TCF of
Nelson system changes as the energyE of the system is
changed. It is known from numerical experiments that
E.0.3 dynamics is wholly chaotic and gradually it cross
over to fairly irregular to harmonic~regular! asE decreases.13

Due to the presence of the Diracd-function in the integral in
Eq. ~13! we need to perform integration in a three~not four!
dimensional space.16

Numerically we calculate the coefficients$Bn% in Eq.
~17! up to n5M (520), based on the well-known formul
Bn5^( f n)2&/^( f n21)2& with f n thenth order random force,12

and employ theM th order Gaussian approximation Eqs.~20!
or ~21!. We now briefly comment on how thenth order ran-
dom forcef n can be obtained by solving a difference equ
tion. Since Hamiltonian~23! consists of polynomials only
the equations of motion are also of polynomial forms. Fro
this fact the random forces$ f n% is expressed as the sum o
polynomials, that is, f n5( l 1 ,l 2 ,l 3 ,l 4

Cl 1 ,l 2 ,l 3 ,l 4
(n) p1

l 1p2
l 2y1

l 3y2
l 4

with l i>0. We consider the caseA(x)5y1 , for which f 1
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6561J. Chem. Phys., Vol. 109, No. 16, 22 October 1998 Munakata, Hussien, and Nakamura
FIG. 3. ~a! The partial sumCA(n)[(m50
n cA(m) for

K50.1 ~denoted by a solid line!, 0.5 ~denoted byL!,
and 0.9 ~denoted by1!. ~b! The same as~a! for K
52.0 ~denoted by a solid line!, 6.0~denoted byL!, and
10.0 ~denoted by1!.
lt

m

no
n-

io

be
tio

de-

ec-

ped

ch
s

n

5dy1 /dt5p1, thus Cl 1 ,l 2 ,l 3 ,l 4
(1) 5d l 1,1d l 2,0d l 3,0d l 4,0 and the

higher-order coefficientCl 1 ,l 2 ,l 3 ,l 4
(n) (n>2) is determined re-

cursively from Cl 1 ,l 2 ,l 3 ,l 4
(n21) , where effects of the projection

operator are to be properly taken into account. The difficu
in the numerical calculations is that as the energyE increases
the phase space is extended and at the same time we
use the small mesh sizes forDp2 , Dy1 , andDy2 since the
higher-order random force consists of higher-order poly
mials. This situation is qualitatively similar to what we e
countered before for the standard map, Eq.~22!, when K
became large. Accordingly we had to restrict our calculat
of the TCF of the Nelson system toE<0.01.

In Fig. 4 we show the power spectrumGA(v) which is
obtained fromf̃A(s) by

GA~v!5real part of f̃A~s5 iv!, ~25!

for A5y1 for E50.001. In this case dynamics is seen to
rather regular and we observe nearly harmonic oscilla
Downloaded 20 Sep 2001 to 143.167.253.243. Redistribution subject to 
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aroundv51/A(10).0.316, which is obtained from Eq.~23!
in the harmonic limit. As expected numerical results are
pendent on theM-value we adopt in theM th order Gaussian
approximation, Eqs.~18! and ~20!. In Fig. 5 we show the
spectra forE50.01 when we setM519 andM520. It is
noted that the two spectra fromM517 andM519 Gaussian
approximations~also the two spectra fromM518 andM
520 Gaussian approximations! are almost indistinguishable
on the scale of the figure. We see from Fig. 5 that the sp
trum for E50.01 has relatively broad peak aroundv50.4
and the TCF, corresponding to the spectrum, shows dam
oscillation decaying to zero fort>60 in contrast to the TCF
for E50.001 which decays to zero fort>2000. In leaving
this section it is noted that strength of nonlinearity, whi
can be estimated with the fractionf of chaotic phase-space, i
rather weak for the two casesE50.001 andE50.01 studied
above. Here we estimatef from the surface of the sectio
and/or with use of a method of Henon–Heiles,17 in which
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 4. The power spectrum~25! with A5y1 for E
50.001 calculated under theM520 Gaussian approxi-
mation.
r i
ar

ld
ar
e

im

a
th
m
u
F.
o
o

not
F.
to
use

ex-
g-

ive

-
we
one takes many phase-point pairs, very close each othe
tially, and count the fraction of pairs which moves far ap
with time. The fractionf is about 70% forE50.1 ~strong
nonlinearity! but 2% and less than 0.1% forE50.01 andE
50.001, respectively. In view of the fact that the TCF cou
be calculated in a strongly nonlinear region for the stand
map, we may say that our approach to the TCF or its sp
trum has more severe restrictions for the continuous-t
dynamics compared to discrete-time one.

V. REMARKS

In this paper we studied the TCF for low-dimension
systems. From a standpoint of numerical calculations of
TCF, it is usually obtained from a long trajectory of syste
dynamics. In other words it is necessary to first solve eq
tion of motion for long time in order to calculate the TC
However, as stressed before,5 it is sometimes necessary t
consider ensemble of trajectories and the TCF should be
Downloaded 20 Sep 2001 to 143.167.253.243. Redistribution subject to 
ni-
t

d
c-
e

l
e

a-

b-

tained as the average over this ensemble. In this case it is
realistic to rely on trajectories in order to obtain the TC
The motivation to apply the memory function formalism
calculate the TCF stemmed from our needs to avoid the
of many long-time-solutions of differential~or difference!
equations. Our approach enables us to calculate the TCF
actly in the short-time region and approximately in the lon
time one.

The final remark is concerned with the autoregress
moving-average ~ARMA ! model for the time-series
prediction18

An5(
i 50

p

C iAn212 i1(
i 50

q

U ijn2 i[(
i 50

p

C iAn212 i1Fn ,

~26!

where $C i%(0< i<p) and $Q j%(0< j <q) together withp
andq are parameters of the model andj i denotes the Gauss
ian white noise with zero mean and unit variance. First
FIG. 5. The same as Fig. 4 forE50.01 calculated un-
der theM520 ~denoted by a solid line! and M519
~denoted by a dotted line! Gaussian approximations.
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note the similarity of Eq.~6! to Eq. ~26!. Actually if the
memorycA(m) vanishes whenm.p, we can show that the
random forcef (nux0)(n.p) is expressed asFn in Eq. ~26!
with q5p. This means that the ARMA model with the sp
cial conditionp5q can be derived from a dynamical mod
~1! as a generalized Lanvevin equation when the memor
short lived~up to p!. This point will be discussed separate
in the near future.
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