

Physica B 284-288 (2000) 1479-1480

www.elsevier.com/locate/physb

The effects of transverse field on the magnetic properties in a diluted mixed spin-2 and spin-5/2 Ising system

Yasuyuki Nakamura, Sonsu Shin, Takahito Kaneyoshi*

Department of Natural Science Informatics, School of Informatics and Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan

Abstract

The magnetic properties of a diluted mixed spin-2 and spin- $\frac{5}{2}$ ferrimagnetic Ising system are investigated on the basis of the effective-field theory with correlation. The influences of transverse fields and concentrations of magnetic atoms on the magnetic properties are examined numerically. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Ferrimagnetism; Ising model; Molecular magnetism

A number of experimental studies have accumulated recently in the area of molecular-based magnetic materials, and the magnetic properties, namely molecular magnetism, have become an important focus of scientific interest [1]. Theoretically, the systems can be rather well described by a mixed spin (Ising or Heisenberg) model. In recent work [2], we have proposed that the mixed spin-2 and spin- $\frac{5}{2}$ ferrimagnetic Ising system on honeycomb lattice can explain the characteristic temperature dependence of magnetization observed at low temperatures in the molecular-based magnetic material, N(n-C₄H₉)₄Fe^{II}Fe^{III}(C₂O₄)₃ [3].

The aim of this work is to report some characteristic effects of a transverse field and concentrations of magnetic atoms on the magnetic properties in the diluted mixed spin-2 and spin- $\frac{5}{2}$ ferrimagnetic Ising system on honeycomb lattice, using the effective-field theory with correlations (EFT) [2,4]. As far as we know, only a few studies have dealt with the effects of a transverse field on molecular magnetism [2,5].

The Hamiltonian of the system is given by

$$H = J \sum_{(ij)} S_{iA}^z S_{jB}^z \xi_{iA} \xi_{jB}$$
$$- \Omega_A \sum_i S_{iA}^x \xi_{iA} - \Omega_B \sum_j S_{jB}^x \xi_{jB}, \qquad (1)$$

where J(>0) is the exchange interaction, S_{iA}^{α} ($\alpha = x \text{ or } z$) is the spin- $\frac{5}{2}$ operator and S_{jB}^{α} is the spin-2 operator. The first summation is over all nearest-neighbor pairs of atoms. ξ_{iA} (or ξ_{jB}) is a random variable which takes the value 1 with a probability p_A (or p_B) or 0 with a probability $1 - p_A$ (or $1 - p_B$), depending on whether the site *i* (or *j*) is occupied by a magnetic atom or not. Ω_A and Ω_B are the transverse fields on the *A* and *B* sublattices.

We are here interested in studying the phase diagram and the thermal variation of the total longitudinal magnetization in the system, since there is an order with a finite total transverse magnetization at all temperatures. The total longitudinal magnetization M_z of the system is

$$M_z = \frac{1}{2} (p_A m_A^z + p_B m_B^z)$$
(2)

with

$$m_A^z = \frac{\langle\langle \xi_{iA} S_{iA}^z \rangle \rangle_{\rm r}}{\langle \xi_{iA} \rangle_{\rm r}} \quad \text{and} \quad m_B^z = \frac{\langle\langle \xi_{jB} S_{jB}^z \rangle \rangle_{\rm r}}{\langle \xi_{jB} \rangle_{\rm r}},$$
 (3)

where $\langle \cdots \rangle$ and $\langle \cdots \rangle_r$ denote the thermal and random averages. Within the EFT, the magnetizations and the transition temperature T_c can be easily obtained by the use of the formulation in Refs. [2,4]. The compensation temperature T_{κ} , if it exists in the system, can be determined from the relation $M_z = 0$.

Fig. 1(A) shows a typical phase diagram of the system with $\Omega_A = \Omega_B = \Omega = 0.0$ in the $(k_B T/J, p_A)$ plane, when the concentration p_B is changed from $p_B = 1.0$ to 0.3. The T_C curves exhibit the characteristic behavior expected for

0921-4526/00/\$- see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: \$ 0 9 2 1 - 4 5 2 6 (9 9) 0 2 6 6 8 - X

^{*}Corresponding author. Fax: + 81-52-789-4846.

E-mail address: kaneyosi@phys.human.nagoya-u.ac.jp (T. Kaneyoshi)

Fig. 1. Phase diagram in the $(k_{\rm B}T/J, p_A)$ plane with transverse field $\Omega/J = 0.0$ (A) and $\Omega/J = 0.5$. (B)

diluted magnetic systems. But T_{κ} could not be obtained when p_B is lower than $p_B = 0.6$. Fig. 1(B) shows how the phase diagram is modified, when a finite transverse field $(\Omega/J = 0.5)$ is applied.

Fig. 2 shows the temperature dependencies of M_z in the system with $p_A = 0.6$ and $p_B = 0.8$, when the

Fig. 2. The temperature dependencies of M_z in the system with $p_A = 0.6$ and $p_B = 0.8$.

transverse field is changed from $\Omega/J = 0.0$ to 3.0. The compensation point can be observed for relatively small transverse fields.

References

- O. Kahn, in: E. Coronado, et al., (Eds.), Molecular Magnetism: From Molecular Assemblies to the Devices, Kluwer Academic Publishers, Dordrecht, 1996.
- [2] T. Kaneyoshi, Y. Nakamura, S. Shin, J. Phys.: Condens. Matter 10 (1998) 7025.
- [3] C. Mathoniere, C.J. Nuttall, S.G. Carling, P. Day, Inorg. Chem. 35 (1996) 1201.
- [4] T. Kaneyoshi, M. Jascur, I.P. Fittipaldi, Phys. Rev. B 48 (1993) 250.
- [5] M. Jascur, A. Bobak, J. Magn. Magn. Mater. 161 (1996) 148.