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Existence of a compensation temperature of a mixed spin-2 and spihtsing ferrimagnetic system
on a layered honeycomb lattice
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The magnetic properties of a mixed spin-2 and siaim'ng ferrimagnetic system on a layered honeycomb
lattice are studied. In particular we investigate the effect of a single-ion anisotropy and an interlayer interaction
on the compensation phenomenon, in order to clarify the characteristic features observed in a series of
molecular-based magnetsFe'Fé" (C,0,)3[A=N(n-C,Hyn41)4, N=3-5]. We carried out Monte Carlo
simulations and found that an interlayer interaction plays one of the roles for the existence of a compensation
point. It is pointed out that a compensation point may be possible even if interlayer interactions are zero,
provided there are other longer-range interactions.

[. INTRODUCTION positioned between layers. However, the system considered
in both studies was two-dimensional honeycomb lattice,

A number of experimental works in the area of molecular-which means that the effect of a catiéi, namely an inter-
based magnetic materials have been stimulated in recef@yer interaction, was neglected.
years and the magnetic properties has become an important In this study, we investigate a mixed spin-2 and spin-
focus of scientific interest? The search for materials which Ising ferrimagnetic system on a layered honeycomb lattice
order at or above room temperature is a major driving forcéVith Monte Carlo simulations in order to clarify the charac-
moving the field. Among these materials, ferrimagnets inf€ristic behavior of the molecular-based magnéie' Fe''
which two kinds of magnetic atoms regularly alternate anti-(C204)sl A=N(n-CqyHzn1)4,n=3-3]. In particular, the ef-
ferromagnetically seem to play an important role. For exfect of the interlayer mteractu_)n is examined. In Sec. .II, we
ample, the recently developed amorphous V(TCNE)sol- cjescnbe our model and detall_s of our Monte Carlo simula-
vent order ferrimagnetically as high as 4003KAnother tions r_:md results are shown in Sec. Ill. We conclude our
experimental group synthesized compounds such a%tUdy in Sec. 1V.
AFd'Fd" (C,04)3 [A=N(n-C,Hzn11)4,n=3-5] which
have critical temperatures between 35 and 48 K and some of
them have compensation temperatures near 3aé¢pending We study a layered honeycomb lattice with spin-2 and
on the kind of a catioi*. The compensation temperature is spin< spins which represent ffeand Fé' atoms, respec-
the temperature where the resultant magnetization vanisheigely. Both spins locate in alternating sites of a two-
below the critical temperature. The existence of compensadimensional honeycomb lattice and the lattice has a layered
tion temperatures has important applications in the field oktructure. The Hamiltonian we adopt has the form
magneto-optic recording.

Mixed Ising systems provide simple models which can _ N N _(1+1
show ferrimagnetic ordering and they may have compensa- H= —J12| (,2]) SI( )UJ( )_‘JZEI 2 ‘71( )Ui( )
tion temperatures. The magnetic properties of these models
have been studied by several methods such as a meah-field _DZ > (UJU))Z’

i

Il. MODEL AND MONTE CARLO SIMULATIONS

)

and an effective-fieRitheory, a cluster variational theofy,
Monte Carlo simulation&;'® and so on. Particularly,
in relation to compounds AFd'Fé" (C,0,); [A  WhereS" ando{" spins are spirk and spin-2 ones, respec-
=N(n-C,H,n+1)4,n=3-5] mentioned above, there are tively, on thelth layer.J,(<0) is an exchange interaction
theoretical’ and Monte Carl&**studies in order to examine betweens{ and o{", andJ,(>0) is an interlayer interac-
the magnetic properties with same model Hamiltonian. In theion betweens(" and o' ). The summatiors ;) is per-
theoretical study on the basis of an effective-field theoryformed for nearest-neighbor spin pairs.

(EFT), it is reported that a single-ion anisotropy constant We apply a standard importance sampling method to
plays an important role for the existence of a compensatiogimulate the Hamiltonian described by Efj). Each layer of
point and there is a critical value of a single-ion anisotropyour lattice has a honeycomb structure with a periodic bound-
constant above which the compensation point can adﬁear.ary condition represented in Fig. 1, where open and filled
In the Monte Carlo study, however, there was no evidence taircles are F&and Fé'. An unit cell of each layefindicated
support the theoretical resdft!® The series of materials by a dotted line in the figujeconsists of two atoms and is
have a layered honeycomb structure, in which Bad F&'  repeated along the directioas anda,. 2N? sites are con-
pairs bridged by oxalate ions,03 are arranged to form a tained in each layer and\®L for L layer systems. We chose
two-dimensional honeycomb structure and catiéns are  N=20 andL = 20 for simulations. Configurations are gener-
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FIG. 1. A selected honeycomb layer with periodic boundary d

condition. The unit cell consists of two atoms. In this figure the

lattice size isN=5 and the number of spins ifN#=50. There are

2N2L spins inL layered system.

FIG. 2. Ground-state diagram of the present model. Six points
(A, ... F) are guides for Fig. 3.

a_ted by sequ_entially sweeping through the lattice and making e :eg)z _ E—’_ }(j ,+d) for — E’$j2+ds _ §
single spin-flip attempts. The flips are accepted or rejected 4 2 2 2
by the Metropolis algorithm? Data are generated with 40 (7)
Monte Carlo steps per site after discarding the first 5000
steps per site. The error bars are calculated with a jackknife —e®=0 for i _ E>
method?® by taking all the measurements and grouping them eg=€g =0 for jo+d< 2"
in 20 blocks.
We calculate the internal energy per site, and Fig. 2 shows the ground-state diagram, whese
=J,/|J,| andd=D/|J,|. Figure 3 shows the temperature de-
(H) pendences of the energy per spin for several sets of values
- N2’ 2) (d,j,) which are plotted in Fig. 2. As temperature decreases
to zero, each energy approaches to the value which are cal-
the specific heat, culated by Eqs(7).

c p?
ks  2N2L Let us fix the value ofj, to j,=0.2, and examine the
the sublattice magnetizatioms, andmg defined as effect of a single-ion anisotropy constethbn the magneti-
zation curve. In Fig. 4, we plot total magnetizatiokisde-
1 fined by Eq.(6) as a function of the temperature for several
mA:L2N< EI Si> (4 values ofd [Fig. 4a)] and sublattice magnetizations, and

1
mB_L2N<; O'j>, (5)

and the total magnetization per spin,

(<H2> _ (H}Z), 3 A. Effects of a single-ion anisotropy

and

M+ Mg 5
=— 6 =
2
- "0 A(j,=2.0 d=2.0)
where 8= 1/(kgT). ¢ B(j,=20d=-10) |
5 C (j,=2.0 d=—4.0)
IIl. RESULTS D (,=10d=-40) |

* E (j,=1.0 d=—6.0)
We start our simulation by calculating an internal energy. —16 | “F(i=10d=-90) |
Since the ground-state energy can be exactly calculated, w -18 ! '

can check the reliability of our simulation. The ground-state 0 5 g 10 15
energy per spinEg or eg=Eg/|J,|, is calculated to be ®

FIG. 3. Temperature dependences of the energy per site for
several sets of valuesd(j,). Each set corresponds to one of the

e =e(2)z—£3—2(j +d) for —§sj +d
SRS 2 2 2 points plotted in Fig. 2.
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FIG. 4. Total and sublattice magnetization as a function of the,51es of Te anchomp are not effected. The compensation
temperature for several values Df|J,| whenJ2{|J1| is equal 0.2. point can appear whed becomes larger than the critical
Arrows in (b) represents the compensation points. valued¢ which is estimated between 2.5 and 3.0 in the case

of j,=0.2. Note that the dip inT; and the projection in
mg only for d=4.0 andd=8.0[Fig. 4b)]. From this figure T, . neard=6.0 can be considered to be a statistical fluc-
we can clearly recognize the existence of a compensatiotuation.
point for d=4.0 and 8.0 and a compensation point varies
with the value ofd. Arrows point the compensation tempera-
tures. The result is in striking contrast with the one in the
case ofj,=0. Without interlayer interactions, no compensa-  Next, we fix the value ofi to d=0.0 and varyj,. Total
tion point was recognized even if a single-ion anisotropyand sublattice magnetization curves for sevgsare shown
constant is relatively larg:!® As for the type of magneti- in Fig. 7. In the case ofi=0.0, the system is always in the
zation curves, we can see four types of behavior. Wi ec=e{’ region of the ground-state diagraifig. 2) for any
equal to 4.0 or 8.0, the magnetization behavesNagpe j»(<0). Therefore the total magnetization at zero tempera-
curve in the Nel's classificatiot® and behaves ferromag- ture is equal to 0.25 in absolute value. The variation3 ©f
netically (Q type) for d=0.0 and 2.0. In the case af= andT.,mpWith the change of an interlayer interactippare
—2.0 and—2.6, the magnetization curves becofeaype. depicted in Fig. 8. In the case 9£=0.0, the system is
d=—2.7 is the critical value sincg,+d=—2.5 is realized. equivalent to a two-dimensional honeycomb lattice system
The value of the total magnetization is 0.5, which indicates

B. Effects of interlayer interactions

that the ground state is the state where spin-2 spins take 7 . . . .
states;=1 or o;=2 with equal probability and Spi-spins 65 od=10
take a stateS; = — 3. The type of the magnetization curve is 6 2d=8 .
Q type. Whend becomes just less than the critical valdie 55 | ijj ]
=—2.7, the magnetization shows an interesting behavior. 5| vd=2 ]
The magnetization curve falls rapidly from the maximum  4g [ xd=0 ]
value [M|=0.75 at T=0, which is not predicted in the ol ﬂ vd=-2
Neel's classification. Asl becomes small further, the mag- &, 1 } { cd=—4 |
netization behave® andP type. O sl 7 f I 1
We can see from Fig. 4 that critical temperatuii:) E &

increases and compensation temperatligg £, (if it exists) 251 , B i ]
decreased asincreases. In order to investigate the effects of 2 [ s ERE S ]
d on the critical and compensation temperature, we draw ¢ 15 3 *:z = fﬁ{@%ﬁb 53 ]
phase diagram in Fig. 5T is approximately attained by L ,{g,z*’j{%;‘i}%’f} ..oy 960 1
locating the maxima of the specific heat curve shown in Fig. 05 t z:...;;;g;;gg;;ﬁg%?ﬁ“ s e teee 090080

6 andT,mp is the temperature where a total magnetization 0 0 sian® P . . 8 10
vanish belowT . As shown in the phase diagram Fig.Ts; KT

and T¢omp S€EM to become insensitive to the changed of e

when d becomes large. Even when we carried out Monte FIG. 6. Specific heats again&gT/J for different values of
Carlo simulations with the larger value of d=20.0, the D/|J] in the case ofl,/|J;|=0.2.
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FIG. 7. Total and sublattice magnetization as a function of the

temperature for several values d§/|J,| in the case ofD/|J,|
=0.0. Arrows in(b) represents the compensation points.

and the critical temperaturd (=4.5) forj,=0.0 is equal to

the result obtained for the two-dimensional systértt is

for the range =D/|J,;|<8.

It seems that interlayer interactions may play an important
role for the existence of a compensation point. We calculate
a minimum value ofj ,, represented by;"", above which a
compensation point can appear for a certain valug: hase
diagram, Fig. 9, shows the results. Aecomes largg,;""
approaches to zero but will not reach zero, because there is

found from this figure thaT .., becomes insensitive to the
change ofj,. T¢, however, keeps increasing with increase
of the value ofj,.

Let us consider how the compensation phenomenon oc-
curs. Asj, increases, ferromagnetic interactions between

o and of' ") get stronger, which make it possible for  we have applied Monte Carlo simulations to the study of
spin-2 sublattice to remain ordered at higher temperatures, mixed spin-2 and spig-Ising model on a layered honey-
Furthermore ifd is positive, the sublattice is easier to order. comb lattice modeled by Eq() in order to investigate
On the other hand, the spihsublattice magnetizatiom{s) ~ a characteristic  feature  of AF€'Fé"(C,0,)s [A
decreases as temperature increases. Then, yhisnlarger  =N(n-C,H,,,.1)4,n=3-5]. In particular, we have exam-
than a certain value, sublattice magnetizatignexceedsn,  ined the effect of interlayer interactions and a single-ion an-
in magnitude at some temperature below the critical point. jsotropy on the existence of the compensation point.

no compensation point in the case jgi=0.0. On the other
hand, asd gets smallerj"'" becomes large linearly.

IV. CONCLUSION

11 T T

As is seen from Fig. 5, when there are interlayer interac-

' ' ' [ tions, there exists a critical value dfabove which a com-
® Critcal Temperature (T,) b pensation point can appear. This result contrasts sharply with
10 [ OCompensation Temperature (T.,,,,,) e 1 that for the system without interlayer interactidAs3On the
° other hand, even ifl is equal to zero, a compensation point
9r °® 1 can be found whel, is larger than a certain valusee Fig.
,o' 8). These results suggest that including interlayer interac-
gl e? 4 tions is considered to be one of the cause for the compensa-
= .' tion phenomenon. Our main result is summarized in Fig. 9.
& 2L «2° i As d becomes largejJ"", above which a compensation
e? ©Co point can appear, approaches to zero but does not reach zero.
6l ® oooOoo | As d becomes smalij;"" becomes large linearly.
® © o0 o ¢ Our results show that a compensation point appears when
b the interlayer interactions between spin-2 spins is included.
Sre 1 Other studies for two-dimensional system suggest that the
T next-nearest-neighbors interaction is important for the exis-
4 0 ois 1 1i5 2 2i5 3 tence of a compensation poftitt’ Therefore it may be inter-
T/ esting to investigate effects of next-nearest-neighbors inter-
actions between spin-2 spins in the same layer for our
FIG. 8. Phase diagram of the system widt|J;|=0.0 in the  System. A compensation point may be possible evgn i§
T-J, plane. zero provided there are such longer-range interactions.
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In this study we showed the results obtained form Monteference from the present results. Therefore our estimated val-
Carlo simulations for the system with=L=20. We also ues such as¢, Tcomp, and so on are considered to be
carried out simulations with larger system, ddy=L =40, reasonable. Needless to say, if we want precise thermody-
for several sets of parameters. We could not get much diframic values, we should perform finite-scaling analysis.
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