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The Glauber dynamics of the Hopfield model is studied with use of the Mori-Zwanzig projection-
operator formalism for irreversible processes and exact evolution equations for the overlaps are derived.
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The Hopfield model [1] for neural networks with sym-
metric connection J;; between two neurons i and j has
been extensively studied from the standpoint of (equilibri-
um) statistical mechanics of phase transitions in disor-
dered spin systems [2]. Typical information which can be
afforded by the theory is the number of the patterns
which can be stored and retrieved in the network and the
rate of errors in the retrieved pattern. Recently dynami-
cal behavior of the model has gathered considerable in-
terest in connection with the speed of the association pro-
cess and the size and structure of the basins of attraction
[3-5]. These questions can only be answered within a
nonequilibrium statistical dynamic treatment of the sys-
tem, which is the main concern in this paper.

Basic evolution of the Hopfield model, consisting of N
formal neurons (or Ising spins) is usually governed by the
Glauber dynamics [6]
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where p(8S,t) denotes the N-body probability distribution
at time ¢ with S=(S;,...,Sy) and S(S/)=(S,,...,
S; —158{8: 415 .+ +»Sy). The T is the cycle time in which
each of the N neurons updates once on average. The
function f(S;|k;) represents the probability for the ith
spin to flip into the state S; in the field 4;, which is given
at temperature T by

exp(h;S;/T)
exp(h; /T)+ exp(—h; /T) ’
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and the field h; is determined by N —1 spins as

hi= 23 JyS;, (3)
7D
when there is no external field. The connection J;; is ex-

pressed in terms of the p embedded patterns EW
= {g’ﬁ-“)} (i=1,...,N) by the Hebbian rule [1,6],

J;=(1/N) i EMEM(1-8,) . @

u=1
With regard to a retrieval process the most important
quantity is the overlap, defined by [7]
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which quantitatively measures similarity between the
state S of the system and the pattern u. The retrieval or
association process is the one in which one of the #i,(¢)
approaches one with the other p —1 overlaps remaining
small (typically of order N ~!/3). The equilibrium distri-
bution p.(8), which satisfies Lsp.q =0, is given by

Peg(S)=Z lexp [2NT) '3 M%), (6)
@

where Z is the partition function of the system. When
the number of the patterns p is much smaller than that of
neurons N, as is often the case, mapping the Glauber dy-
namics to the overlap dynamics belongs to a typical prob-
lem of deriving a reduced description and this is most
effectively performed by utilizing some kind of
projection-operator method, which has been playing an
important role in irreversible statistical mechenics
[8-10].

In this Brief Report we apply the Mori-Zwanzig
projection-operator formalism to the Glauber dynamics
(1) in order to investigate dynamics of the retrieval pro-
cess. Before proeceeding to the details of the calculation
we briefly present the main framework of the formalism
in a form suitable for later application. Let us assume
that the probability distribution function p(x,) is
governed by

—"’L(;;—"l=Lp(x,t) ) 7

where L is a general time-independent linear operator.
Although the original formulation is given for the Hamil-
tonian system [9] and a stochastic system described by a
Fokker-Planck operator [10], the L in Eq. (7) can be the
Glauber operator L, (1) where x denotes S and integra-
tion over x in Eq. (8) below should be interpreted to be a
summation over S. The operator adjoint to L is defined
by

[dxfx)Lg(x)= [ dxg(x)Af(x) (8)
for arbitrary functions f(x) and g(x). The operator A is
seen to control time evolution of dynamical variables, i.e.,

AW A4 or A(1)= explArl4 . ®
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To see the implication of Eq. (9) we consider that at time
t =0 we know that the system is located in the state
space at X, that is, p(x,t=0)=8(x—x,). Then the ex-
pectation of an arbitrary variable A4(x) at time ¢ is calcu-
lated as

(4 (t)),,o=fdx A(x) exp[Lt]8(x—xq)
= exp[At] 4(xp) » (10)

where now the A is an operator working in the space x,.
Let us consider collective dynamics of a set of dynamical
variables A4;(x) (i=1,...,I). Mutual correlation
among the variables { 4;(x)} is best extracted by intro-
ducing a projection operator P into a space spanned by
{ 4;(x)}, defined by [9,10]

PB(x)= 3, (B(x), 4;(x)E™");; 4;(x) , (1
ij
where the inner product (f(x),g(x)) of two dynamical
variables f and g denotes the equilibrium average
fdxf(x)g(x)peq(x) and E,;=(4,(x), 4;(x)). Applying
the operator P on Eq. (9) one obtains what is called a gen-
eralized Langevin (GL) equation [9,10],

dAt(t) . t
7 —§mi,Aj<t>—des Wt —s5) A, (s)+£i(1)
(12)
where the frequency and damping matrices are given by
w; =3 (Ad;, ANE )y , (13)
k
V()= 3 (Af;(), ALNE )y , (14)
k
and
fi)y=exp[t(1—P)AI{(1—P)AA4;}
=exp[t(1—P)ALS; . (15)

Usually calculation of the damping kernel W(¢) is prohibi-
tively difficult. However, by including all the relevant
variables in the set { 4;(x)} we may have a rather good
description of the collective dynamics of the system even
if we neglect the damping kernel entirely. For dense
gases and liquids [11], for example, by choosing as
{A;(x)}] the density in a p space, f,(x)=3 &(r

—r,)8(p—p,), where the sufix i of A;(x) now
becomes continuous parameters (r,p) and x
=(ry...,IxsP1s - - - » Py)> We have a kinetic equation for

frp(t) in which the matrix o gives a Vlasov (mean-field)
term and the kernel W represents effects of collisions.
From many examples of applications of Eq. (12) to vari-
ous systems [12,9], it is reasonable to call the GL equa-
tion (12) without the kernel the mean-field approxima-
tion. Effects of damping could be approximately taken
into account as W(¢)=xW¥(0)y(¢) where 1(¢) is chosen to be
a simple function with some parameter(s) determined by
sum-rule arguments. Below we mainly consider the
mean-field approximation with a brief comment on the
damping kernel.
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Now we turn to the problem of overlap dynamics.
From Egs. (7) and (1) the operator adjoint to L, Eq. (1),

~ is given by

AGg(S)=I"1Zf(—SiIhi)[g(S( —S;))—g(8)].  (16)

Since we are interested in dynamics of retrieval we take
as the collective variables { 4;(S)} the quantity

V4 A
gm(S)= [] AM,—M,)=AM—-M), 17)
p=1

where A(n) is defined for integer n with A(n)=1 for n =0
and O otherwise. g)4(S) represents the event in which the
overlap M w(p=1,...,p) takes the value M, for each p.
The ensemble average (gﬁ(S) ), which expresses the
probability of observing the overlap M=(M,,...,M,)
in the equilibrium state, the correlation ZE(M,M')
=(gn(S)gy(S)) and its inverse are given by

EM,ZL/ZNT]QN(M) ) (18)

I3
E(M,M')=AM—M")gn(S)),
ETUM,M)=AM—M")/{gu(S)),

where Qy(M)= ¥ .g\m(8)=T,g)(S) is the number of

the events, among the 2V possible microscopic spin

configurations, in which gy(S)=1. From Egs. (16) and
(17)

{(gm(S))=z"lexp

(19)

Aggm(S)=T"' 3 f(—S;|h;)
X [T [A(R, (1) —EPS,—M,)
3

—A(B, () +EMS,—M,)] ,
(20)

where we have introduced A x(1) by

=3 &¥s;, 1)

J#ED
and the field A;, Eq. (3), is expressed in terms of .24 #(i )as

B=N"'3 MM, ()=N"1§,-M() , 22)
13

where £&; and M(i) are p-dimensional vectors
(ED, ..., EP) and [V, ..., MP(i)]. The first step
to obtain

wM’M'E E(AGgM,gM" )E—I(M”,M‘)
M
=(AgM’gM' )/<gM' )

[see Egs. (13) and (18)] consists in calculating Dy
=(Agum:&m ). From Egs. (20) and (6) we see that, setting
y=exp[ 3 M, /2NT],
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Dym/vy=2ZT,
i

1”1 A(M, —M,—2E1S,)f(—S;|h )A(ﬁp(i)-*é‘ﬁ”’s,-—Mu)

- IpI AM,—M,)f(—S;|h)AM,()+EPS, —M,)

We take the trace over S;==1 and then over the remaining spin variables to obtain

Dym /=23 IA(MI—M_Zgi)f[—'llhi=N—12§£ﬂ)(Mu+§§‘m)]QN—I(M+§i)
i “
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+AM —M+2§,)f [llh,-=N“ SEF(M,—E) ]ﬂ~_1<M—§,->
22

—AM' —M)f [— 1h,=N"13 MM, —EH) ]QN_,(M~§,-)
s

—AM'—M)f [1|h,-=N“ > EF(M, +EF) ]QN_l(M+§,-)
lad

From Egs. (19) and (24) we see that our next task is to
calculate

p(gnM)-—z—ﬂN._l(M—gt)/QN(M) s (25)
which appears in
opm=Dymm /[TYQy(M)] . (26)

From the definition (25) p(£;; M) stands for the probabili-
ty of S;=1 under the condition 3 5;§; =M. Without
loss of generality we take i =1. First we consider the case
p=1, i.e., there is only one pattern. From the condition
Ejsigy)le we have S, +2;(¢1)§‘11)§;‘1>S'=M1§(11)-

From the law of large number, half of & )53-{) take the

value 1 and we relabel these j to yield IN/Zs,

_Efv=N/2+1Si=M1§(1” or

N/2
S; =M V72 . @7
i=1

Since the probabilistic variables S;,...,Sy, are
equivalent to each other we have from Eq. (27)

p(EVMON/2—[1—p( &M IN/2=M £V /2,

leading to

(1+M&V/N)  (1+m&")
2 2 '

p(EV;M )= (28)

(24)

I

If there are two patterns, p =2, we have an additional
condition S;+3 J.(*”g?’gj?’sj =M,£&?. Using the law
of large number again we note that half of the coefficients
EPED (j<N/2) take the value 1, which are relabeled
again to have 348, —N% Si=M,E2 /2.

From Eq. (27) and the above we have

N/4
S S, =M £V +M,E21/4 (29)

i=1

which gives
N
4
=[M, £+ M,E71/4

/ 2. (30)

So long as p is kept finite as N becomes large, we can con-
tinue the arguments above to obtain generally

/2. 31)

The mean-field term 3 ;0;; 4; in Eq. (12) is now ready to
calculate, from Egs. (26) and (31) leading to

PUEMIX T —[1—p(EsM)]X

thus

2
1+ 3 miéli)

i=1

pEsM)=

p
pE;;M)= ll-i— S m,EH
p=1

%ﬁ’M,M'gM'_—‘F_IZ {gM+2§if[_llhi=N_lz§§“)(Mp+gﬁ'u))]P(gi;M+2§i)—(M_’M—2§i)]
i b

+r7'y [ng [llhf=N"‘2§§“)<M#+g§">) ][l—p(gi;M)]—(M—»M—zg,-)] , 32)
i [
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where (M—M—2£;) means that we replace all the M
appearing on the left-hand side by M—2&;. The remain-
ing task is to represent the result in terms of the overlap
{m,} rather than {M,}. Since 3\gm=1 we define
g(m)=N’g)y, which satisfies [dmg(m)=1. After mul-

tiplying N” on both sides of Eq. (32) we use the relation

& | 26 | 3u(m)
v(m)—v {m ZW ]— > N 3m
B p
1 zgﬁp) 2§§-V)
% 2 N N
3% (m) -3
x am#amv +TOWNT

to derive finally

J
.2 §f-") [am“ ]

Ly
m'f,'i— tanh [m_fi' ] ]

} ) (33)

3
[[1 tanh(m -§;)] om

v

X

1

Xg(m,t)+0 N

where the order N ~! correction is given by

N—l 2 2§£,u.)§£.v)

Ly, v

9
om,,

« [“+m-§;>g<m,t> ” .

(34)

Here we give two comments on the GL Eq. (12) with re-
gard to its application to overlap dynamics. The first one
is concerned with the damping kernel. For the one-
pattern case (p =1), which is equivalent to infinite-range
ferromagnetic system [6], we have calculated the kernel
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(¢t =0) to the lowest order in N ! to find that it exactly
vanishes. This strongly suggests that W(z) vanishes for
t>0 and p>1 to the lowest order in N~!. Secondly,
since the random force fy(¢), which is given as f;(¢) in
Eq. (12), is orthogonal to {gy}, we can safely neglect it in
discussing the probability distribution function based on
the GL Eq. (12) [10].

Now from Eq. (33) it is seen that the average
(m,(t))= [dmm,g(m,?) follows the equation

d(m#(t» _

—1F
- Il —(m, ()

+((£¥ tanh({m(2))-£/T)))],

(35)

where ({ )) denotes the average over the patterns ac-
cording to the probability law p(&#)=1 )=21. In deriving
Eq. (35 we have replaced (tanh(m-£/T)) by
tanh({m)-£/T), which is consistent with our mean-field
approximation in the limit N— « because in this limit
we have only convection of probability and no conduc-
tion (no fluctuations), Eq. (33).

Equation (35) has been derived, to the authors’
knowledge, by two methods. One is based on the notion
of sublattice magnetization [3,13~15] and the other is
based on a path-integral formulation of spin dynamics
[5]. The sublattice idea [3] is elegant enough to be ap-
plied to the more general Hopfield model. The merit of
our mean-field approach is that it is based on a general
method of irreversible statistical mechanics and thus
sheds some light on the implication of the overlap-
dynamics equations (33) and (35). The remaining impor-
tant problem is the case of extensively many patterns,
that is, finite a=p/N. Overlap dynamics in this case is
at present mainly investigated by computer simulations,
except for a few theoretical works [4,5,15,16]. With in-
clusion of some additional variables in the set of collec-
tive variables A, it is hoped that overlap dynamics for a
finite ¢ case could be handled with the mean-field approx-
imation developed in this paper.
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