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Temperature control for simulated annealing

Toyonori Munakathand Yasuyuki Nakamutfa
!Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan
°Department of Informatics, Nagoya University, Nagoya 464, Japan
(Received 17 January 2001; revised manuscript received 12 June 2001; published 25 September 2001

The optimal cooling schedule for simulated annealing is formulated to derive a differential equation for the
time-dependent temperatufét). Based on this equation, the long-term behaviof @f), entropy production,
and the Kullback-Leibler entropy are studied. For some simple examples, such as a many-level system and the
small scale traveling salesman problem, the explicit time dependence of the temperature is obtained. Some
comments are given on simulated annealing based on Tsallis statistics.
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Simulated annealing is a stochastic technique for searclwhereE(x) is the energyor cos} of the system and the time
ing for the (energy minima of complex discrete or continu- dependence db(t) comes from that of the temperature. For
ous systemg1]. Because of its generality and simplicity, later use the equilibrium distribution
simulated annealing has been applied to various optimization
problems, such as the ground-state energy of spin-glass sys- PedX| T(1))=exd —E(X)/T(1)]/Z, (4)
tems and protein folding in condensed-matter physics and .
the design of integrated circuits and the traveling salesmaft l€mperaturd () is introduced here.
problem (TSP in engineering[2]. The key feature of the We try to minimize the expectation v_alue of the energy
annealing algorithm is to utilize thermal noise to allow (E)()=ZE(X)p(x,7) at some specified time For the pur-

moves that may lead to an increase of the energy and drive0Se We consider the functional

change and takes usually a local and occasionally the global

annealing and there have been some studies on this isslide second term with the Lagrange multiplig(x,t) repre-
siderable interest, reflecting the general popularity of simu-5G/§T(t)=0 lead to the following equations:

the system out of a local minimum. The strength of the noise,

minimum state. X ap(x,t)/at—g D(x,x")p(x’,t)
[2—4]. Some related problems, such as the cooling scheduleents the constraint that(x,t) satifies Eq.(1) and the first
lated annealing as a tool for optimization. In this paper we

T
which is measured by the time-dependent temperaf(irg, G[P,T,Al=| dt> |E(X) > D(XX)p(x',t)—A(X,t)
is reduced asymptotically to zero, where the system ceases to 0 X X
: . : . . (5

From both practical and theoretical standpoints, the opti-
mal cooling schedule plays an important role in simulated
that ensures global optimizatidb] and the residual energy term is reduced tdE)(7)—(E)(0) which is to be mini-
as a function of the cooling raf{é], have also gathered con- mized. The variational conditions 5G/ép(x,t)=0,

derive a differential equation for the temperati@) based dA(t)/dt=—DT[A(t)+E], (6)
on optimal control theory7] and discuss some aspects of
simulated annealing based on this equation. [E+A(t)]"[aD(t)/aT(t)]P(t)=0, (7)

We start from the master equation for the probability ]
p(x,t) of the system to be found in the stateat timet.  Where A(t) and E are the column vectors with elements

Denoting byW(x—x') the transition rate fronx to x’, we A (x.t) andE(x), respectively, an®" denotes the transpose
have of D. The conditiondG/ A (x,t) =0 leads to Eq(1). Equa-

tion (6) for the Lagrange multiplier is solved iteratively to be
A(t)=—[5ds MT(s,t)DT(S)E where we setA(t=0)=0

ap(x,t)/at= >, D(x,x")p(x’,t), (1)  and the matrixM(s,t) is defined by
x!
* t
where D(x,x")=W(x'—x) for x#x' and D(x,x)= M(s,t)= >, (—1)”f dt;
— Sy W(X—X"). It is convenient to express E(l) as n=0 s
ty th-1
dP(t)/dt=D(t)P(t), 2 X L dtz"'L dt,D(ty)---D(ty), (8
whereP(t) denotes the column vector with elemepix,t). which satisfiesM(t,t)=M(s,s)=1 (a unit matriy and
We will assume the detailed balance condition IM (s,t)/at=—M(s,1)D(1) and IM (s,1)/ s
/ =D(s)M(s,t). Inserting the solution\(t) into Eq.(7), we
e EOMOW(x—x")=e ECVTOW(X' —x),  (3) have
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ET(t)[aD(t)/dT(t)]P(t)=0, 9)

where the time-dependent energy is defined B&)
=MT(0t)E or

dE(t)/dt=—DT(t)E(t). (10

The time dependence of the temperafli(e) is more explic-
itly represented by differentiating E¢) with respect td to
finally obtain

dT(t)/dt=E"(t)[D(t),dD(t)/dT(t)]P(t)/{ET(t)

X[d?D(t)/dTX(t)P(t)}, (12) \
where[A,B]=AB—BA. The closed set of nonlinear equa-

tions (2), (10), and(11) is the main result of this paper. It is

T(t) and ground-state probability

worthwhile noting that the dynamics described by Bd) is e 20 30 20 50
conjugate to that oP(t), Eq. (2), and it is readily seen that time t

L 2 ) ; )
d{E’(t)-P(t)}/dt=0. The conjugate dynamics E¢LO) is FIG. 1. Temperaturd@(t) andp;(t), the probability to be in the

characterized by its non-negative eigenval(itsur system  groung state 1, for the Gibbgull curves and Tsallis (dotted
is stable. At large time wherp(Xo,t)=1 with X, the state of  cyrveg statistics. T(0)=0.3, p,(0)=0.5 andA=0.25, e=1.0.
minimum energy, it is expected from the constancy of the

inner productE'(t)-P(t) and confirmed numerically that with ¢ a normalization constant. We consider the two-level

E(x,t) becomes large except &t Xo. _ _ system as before. To satisfy the detailed balance condition,
As an application of our theory we first consider ane tentatively consider an additional level 3 with enefgy
N-level system with energfE;=€(i—1) (i=1,2,...N).  =¢+A and choose the following transition rate:
Transitions are only between neighboring levels and the ac-
tivation energy to go dowiup) is A(e+A). ForN=2, W(1—2)=ppy(3)/ped 1) =101+ (q—1)(e+A)/T]H ),
1
W(1—2)=exg — (e+A)/T(H)], 17
W(2—1)= 3)/ 2)={[1+(q—1)e/T])/[1+(q—1
W(21) = exf — AIT(D)]. 12 (2—1)=ped 3)/Ped 2)={[1+(a—1)e/TJ/[1+(q—1)
X(e+A)/TMa-D, (18)

In this simple model12) we can calculate the right hand
side of Eq.(11) explicitly and, whenT(t) becomes small |f we take the limitg—1 we recover the Gibbsian result Eq.
enough so thal (t)<A, we have (12). The right hand side of Eq11) is calculated easily as in
the Gibbsi fter length Iculati h
AT(0)/dt= eT(1)2 exp{— (e+ A)IT()M{AZp(1) e Gibbsian case and after lengthy calculations we have,

corresponding to Eq.14),
—(e+A)? —€elT(1)]}. 1
(e+A)’py(texf—</T(M]}. (13 ST/ aT(), 19
If we further assume that annealing is successful, that is, o
p,(t)=exd — &T(t)] and p,(t)=1, we have with a=[e/(e+A)]"@ D(q—1)/(2—q). Thus for 1<q
<2 we have an exponential decay of the optimal tempera-
dT(t)/dt=—T%(t)exd —A/T(t)]/(e+2A), (14  ture. This rapid decay Gf(t), compared with the logarith-
o . mic decay in the Gibbsian case, can be profitably used in
which is solved exactly to give simulated annealinfB]. In Fig. 1 we show the optimal(t)
_ and the ground-state probabilip (t) for the Gibbsian case
= + . .
TO=AlIn(t[2+€/A]) (15) (12) and the Tsallis cas€l7) and (18). The temperature

Thus for a two-level system one has to cool the system exvariation is found to precisely follow the theoretical predic-
tremely slowly, in accordance with the classical reg6lt  tions (15 and(19) for large timet>1.
The residual energy, the expectation of the energy at ime  Here we note that the exponential asymptotic coolir)
is simply given by (E)(7)=ep,(7)=€[7/(2+ e/A)]~ 2 is different from the well-known power law asymptotic cool-
« 7<% This power law was derived heuristically befggd.  ing for generalized simulated annealifgfa)] and we briefly

In view of the important role played by Tsallis statistics in touch upon this point. In Ref10] it is shown that the gen-
optimization and simulated annealifi@], we study how the eralized simulated annealing with power law cool{iga)]
SlOW decay Of temperatur'é(t) iS modmed |f one emp|oys SatiSfieS.the(WGak) ergo-diCity property. That .iS, the final
Tsallis instead of Gibbs statistics. According to Tsallis sta-State arrived at by the simulated annealing is independent of

tistics [9], the equi”brium distribution is given by the initial distribution function. On the other hand, in our
paper we do not claim that we give a sufficient or ergodicity
peq(x:T)=c/[1+(q—l)E(x)/T]Mq‘l), (16 condition for successful simulated annealing. Instead, we
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FIG. 2. Average energyE)(t) from the optimal temperature FIG. 3. Kullback-Leibler entropys, (t) from the optimalT(t)
T(t) (full curve) and from the linear temperaturg (t)=T(0) (full curve) and from the linear variatioi, (t)=T(0)—at (dotted
—at (dotted curve for a two-level systenfA=0.25,e=1.0). curve. Inset: Integrated entropy productidiy dt’o(t’) from the

optimal T(t) (full curve) and from the linear variationT (t)
show that, if the initial distribution and other conditions for =T(0)—at (dotted curvg The system and the initial conditions
the system parameters happen to be properly chosen, aatg the same as those in Fig. 2.
consequently if the calculation is successful in the sense that

T(t) becomes very small for large then the temperature Sk (D) =2 p(x,1)IN[ p(X,t)/Peg(X: T(t))]. (21
variation should be inverse logarithmic and exponential for

Gibbsian and generalized simulated annealing, respectivelyr(t) andS,, (1) are related to each other through
In this sense the exponential behaviofTgt) [Eqg. (9)] is not
contradictory with the power lay8(a),10]. . .

We give here two comments: one is on hd®)(t) de- SKL(t)_SKL(O):_f dt’a(t’)—f 8(E)
pends on the temperature variation and the other on how the 0 0
optimal T(t) changes ad increases from 2. For the two- dT(t)
level system considered abo{#€)(t) obtained from the op- X(t) : / T2(t), (22
timal T(t) and from the linear variatio (t)=T(0)—at, dt
with T(0)=0.5 anda determined fromT (7=50)=T(7
=50), are compared in Fig. 2. Here we topi0)=0.5 for ~ where  &(E)(t)=(E)(t) —(E)eqt) with (E)edt)
both cases. We note that the optinTdt) depends only on  =XZE(X)peX:T(t)). Since it is expected thatT(t)/dt<0
the initial probability distributiorp(x,t=0) and temperature and &(E)(t)>0 in a general annealing process, we see that
T(0), and it isreasonable thatE)(t) from the optimalT(t) the first and the second terms of HG2) are negative and
is always smaller than that from the linear one. For anpositive, respectively. In simulated annealing, it is desirable
N-level system(up to N=10?), we found that the optimal that the actual distributiop(x,t) precisely follows the equi-
T(t) behaves nearly the same as in the two-level system fdibrium distribution(4) and in this sense the optimal anneal-
long timest>50. However, in the range<0t<<50 cooling ing process represented by E@1) is expected to keep
becomes slower al becomes larger. A more complicated Sy, (t) small. We note that ip(x,t)=px:T(t)) for anyt,
many-level system, a small scale TSP, will be touched upoit is proved that o(t)=0 and also &E)(t)=0; thus
later. dS (t)/dt=0 (as it should. However, in actual simulated

Next we consider the entropy productier(t) and the annealing the cooling rafel T(t)/dt| cannot be zero and the
Kullback-Leibler entropyS, (t) in the process of simulated system has to go through an irreversible process in which

annealing. Introducing the statistical entropy(T) by S= o(t)>0. The question we would like to address is how
—=2p(x,t)Inp(x,t), we know that the entropy production Sy, (t) is kept small, whether the degree of irreversibility
o(t)dt in time dt, defined below, is non-negatiyé&1]: represented by (t) is made small or the positivity af(t) is
used in order to counteract the second term of 8). We
dS(t)=d(E)(t)/T(t) + o(t)dt. (20 compare in Fig. 3¢, (t) for the two temperature variations

represented in Fig. 2. Also showimse) is the integrated
The Kullback-Leibler entropySe, (t) [12], which is also entropy productionfo(t’)dt’, from which we notice that
non-negative, is defined here as a measure of the distaneatropy productioro(t) is larger for optimal control. Fot
between the actual distributiop(x,t) and the equilibrium <20, S, (t) is definitely larger for the optimal case than the
distribution at temperaturé(t), Eq. (4), linear case. However, the line&, (t) begins to increase
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FIG. 4. T(t) (full curve) and(E)(t) (dotted curve for the TSP FIG. 5. The same as Fig. 4 except that the activation en&rgy
with M=6 cities. Note that actuallf(E)(t) —E,,J/10 is plotted = =0.3 is introduced and the initial temperatufg0) is slightly
instead of(E)(t). higher.

aroundt=30, signaling that the functiop(x,t) deviates A=0.3 in the transition to states with lower energy. The
from the equilibrium one, Eg4). In passing it is noted that result is shown in Fig. 5 fof (0)=0.5, whereT(t) and also

for the N-level model this increase @& (t) seems to be a (E)(t) change more slowly compared with Fig. 4 but are
general tendency for cooling schemes other than the optimaittracted to the desirable stationary state of the coupled equa-
one. tions(2), (10), and(11). Thus introducing a nonzerd seems

_ Up to now we have been mainly concerned with a ratheg, extend the basin of the physical attractor with inevitable
simpleN (=2) -level system, which underlies many complex gio\; cooling. Here we comment on the utility of our ap-

systems[13]. In order to make contact with Monte Carlo proach in connection with realistic optimization problems.

simulations, we apply the optimal cooling schedule to aUsuaIIy, simulated annealing for optimization problems in-

small scale TS.P withl :.6. cities put a0, +0.5), (1, +0.5), volves many parameters, the values of which we can choose
anpl(2, *0.5) with the minimum path lengtk,=6. For the . to achieve good performance. Before embarking on simu-
ne|gr_1borhood structure of_the paths we employ the I‘m'lated annealing for the large scale problem at hand, one can
Kernighan[14] 2-opt transition. Therg of the elements of guess desirable ranges of each parameter by solving the dif-

the transition matribV or D(t) in Eq. (2), which is anN ferential equatior{11) for a small scale problem, as we did
X N matrix withN= (M —1)!/2=60, turn out to be nonzero. for the casqe of trrl(e 'I)'SP. P '

In Fig. 4 we plot the optimall (t) and the average energy

In this paper we studied temperature control for simulated
obtained from the initial conditionT(0)=0.2 and p(i,t pap p

, annealing and derived a first order differential equatibh
=0)=ex —E/T(0)]. The energy(=path lengthis seen to g, niemented by Eq¢2) and (10), whose properties were

be rapidly approachingyi,, althoughT(t) has a bump g died for some simple model systems such adaevel
aroundt=S5. In this case we imposed no activation energy ingysiem and a small scale TSP. Our concern here was directed
the transition to states with lower energye., we used the 5 conceptual rather than practical aspects of the simulated
Metropolis algorithmin contrast to thé\-level system stud-  5nealing methods. It is hoped that further studies of the set

ied before. If we increase the initial temperatdr®), we  f equationg11), (2), and(10) will shed more light on tech-
cannot get ghysicalsolution, because the initidequilib-  picg aspects of simulated annealing.
rium) distribution becomes more diffuse and goes out of the

basin of the desirable attractor of Eq8), (10), and(11). To One of the authorgT.M.) expresses his gratitude to S.
cope with this situation we introduced the activation energylkemoto for useful discussions at an early stage of this study.
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