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Temperature control for simulated annealing
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The optimal cooling schedule for simulated annealing is formulated to derive a differential equation for the
time-dependent temperatureT(t). Based on this equation, the long-term behavior ofT(t), entropy production,
and the Kullback-Leibler entropy are studied. For some simple examples, such as a many-level system and the
small scale traveling salesman problem, the explicit time dependence of the temperature is obtained. Some
comments are given on simulated annealing based on Tsallis statistics.
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Simulated annealing is a stochastic technique for sea
ing for the ~energy! minima of complex discrete or continu
ous systems@1#. Because of its generality and simplicit
simulated annealing has been applied to various optimiza
problems, such as the ground-state energy of spin-glass
tems and protein folding in condensed-matter physics
the design of integrated circuits and the traveling salesm
problem ~TSP! in engineering@2#. The key feature of the
annealing algorithm is to utilize thermal noise to allo
moves that may lead to an increase of the energy and d
the system out of a local minimum. The strength of the no
which is measured by the time-dependent temperatureT(t),
is reduced asymptotically to zero, where the system ceas
change and takes usually a local and occasionally the gl
minimum state.

From both practical and theoretical standpoints, the o
mal cooling schedule plays an important role in simula
annealing and there have been some studies on this
@2–4#. Some related problems, such as the cooling sche
that ensures global optimization@5# and the residual energ
as a function of the cooling rate@6#, have also gathered con
siderable interest, reflecting the general popularity of sim
lated annealing as a tool for optimization. In this paper
derive a differential equation for the temperatureT(t) based
on optimal control theory@7# and discuss some aspects
simulated annealing based on this equation.

We start from the master equation for the probabil
p(x,t) of the system to be found in the statex at time t.
Denoting byW(x→x8) the transition rate fromx to x8, we
have

]p~x,t !/]t5(
x8

D~x,x8!p~x8,t !, ~1!

where D(x,x8)5W(x8→x) for xÞx8 and D(x,x)5
2(x9(Þx)W(x→x9). It is convenient to express Eq.~1! as

dP~ t !/dt5D~ t !P~ t !, ~2!

whereP(t) denotes the column vector with elementsp(x,t).
We will assume the detailed balance condition

e2E~x!/T~ t !W~x→x8!5e2E~x8!/T~ t !W~x8→x!, ~3!
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whereE(x) is the energy~or cost! of the system and the time
dependence ofD(t) comes from that of the temperature. F
later use the equilibrium distribution

peq„xuT~ t !…5exp@2E~x!/T~ t !#/Zc ~4!

at temperatureT(t) is introduced here.
We try to minimize the expectation value of the ener

^E&(t)[(E(x)p(x,t) at some specified timet. For the pur-
pose we consider the functional

G@P,T,L#[E
0

T

dt (
x H E~x!(

x8
D~x,x8!p~x8,t !2L~x,t !

3F ]p~x,t !/]t2(
x8

D~x,x8!p~x8,t !G J . ~5!

The second term with the Lagrange multiplierL(x,t) repre-
sents the constraint thatp(x,t) satifies Eq.~1! and the first
term is reduced tô E&(t)2^E&(0) which is to be mini-
mized. The variational conditions dG/dp(x,t)50,
dG/dT(t)50 lead to the following equations:

dL~ t !/dt52DT@L~ t !1E#, ~6!

@E1L~ t !#T@]D~ t !/]T~ t !#P~ t !50, ~7!

where L(t) and E are the column vectors with elemen
L(x,t) andE(x), respectively, andDT denotes the transpos
of D. The conditiondG/dL(x,t)50 leads to Eq.~1!. Equa-
tion ~6! for the Lagrange multiplier is solved iteratively to b
L(t)52*0

t ds MT(s,t)DT(s)E where we setL(t50)50
and the matrixM (s,t) is defined by

M ~s,t !5 (
n50

`

~21!nE
s

t

dt1

3E
s

t1
dt2¯E

s

tn21
dtnD~ tn!¯D~ t1!, ~8!

which satisfies M (t,t)5M (s,s)5I ~a unit matrix! and
]M (s,t)/]t52M (s,t)D(t) and ]M (s,t)/]s
5D(s)M (s,t). Inserting the solutionL(t) into Eq. ~7!, we
have
©2001 The American Physical Society27-1
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ET~ t !@]D~ t !/]T~ t !#P~ t !50, ~9!

where the time-dependent energy is defined asE(t)
[MT(0,t)E or

dE~ t !/dt52DT~ t !E~ t !. ~10!

The time dependence of the temperatureT(t) is more explic-
itly represented by differentiating Eq.~9! with respect tot to
finally obtain

dT~ t !/dt5ET~ t !@D~ t !,dD~ t !/dT~ t !#P~ t !/$ET~ t !

3@d2D~ t !/dT2~ t !#P~ t !%, ~11!

where@A,B#[AB2BA. The closed set of nonlinear equ
tions ~2!, ~10!, and~11! is the main result of this paper. It i
worthwhile noting that the dynamics described by Eq.~10! is
conjugate to that ofP(t), Eq. ~2!, and it is readily seen tha
d$ET(t)•P(t)%/dt50. The conjugate dynamics Eq.~10! is
characterized by its non-negative eigenvalues~if our system
is stable!. At large time whenp(x0 ,t).1 with x0 the state of
minimum energy, it is expected from the constancy of
inner productET(t)•P(t) and confirmed numerically tha
E(x,t) becomes large except atx5x0 .

As an application of our theory we first consider
N-level system with energyEi5e( i 21) (i 51,2, . . . ,N).
Transitions are only between neighboring levels and the
tivation energy to go down~up! is D(e1D). For N52,

W~1→2!5exp@2~e1D!/T~ t !#,

W~2→1!5exp@2D/T~ t !#. ~12!

In this simple model~12! we can calculate the right han
side of Eq.~11! explicitly and, whenT(t) becomes smal
enough so thatT(t)!D, we have

dT~ t !/dt5eT~ t !2 exp$2~e1D!/T~ t !%/$D2p2~ t !

2~e1D!2p1~ t !exp@2e/T~ t !#%. ~13!

If we further assume that annealing is successful, that
p2(t).exp@2e/T(t)# andp1(t).1, we have

dT~ t !/dt52T2~ t !exp@2D/T~ t !#/~e12D!, ~14!

which is solved exactly to give

T~ t !5D/ ln~ t/@21e/D#!. ~15!

Thus for a two-level system one has to cool the system
tremely slowly, in accordance with the classical result@5#.
The residual energy, the expectation of the energy at timt,
is simply given by ^E&(t)5ep2(t)5e@t/(21e/D)#2e/D

}t2e/D. This power law was derived heuristically before@6#.
In view of the important role played by Tsallis statistics

optimization and simulated annealing@8#, we study how the
slow decay of temperatureT(t) is modified if one employs
Tsallis instead of Gibbs statistics. According to Tsallis s
tistics @9#, the equilibrium distribution is given by

peq~x:T!5c/@11~q21!E~x!/T#1/~q21!, ~16!
04612
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with c a normalization constant. We consider the two-lev
system as before. To satisfy the detailed balance condit
we tentatively consider an additional level 3 with energyE
5e1D and choose the following transition rate:

W~1→2!5ppq~3!/peq~1!51/@11~q21!~e1D!/T#1/~q21!,
~17!

W~2→1!5peq~3!/peq~2!5$@11~q21!e/T#/@11~q21!

3~e1D!/T#%1/~q21!. ~18!

If we take the limitq→1 we recover the Gibbsian result Eq
~12!. The right hand side of Eq.~11! is calculated easily as in
the Gibbsian case and after lengthy calculations we ha
corresponding to Eq.~14!,

dT~ t !/dt52aT~ t !, ~19!

with a5@e/(e1D)#1/(q21)(q21)/(22q). Thus for 1,q
,2 we have an exponential decay of the optimal tempe
ture. This rapid decay ofT(t), compared with the logarith-
mic decay in the Gibbsian case, can be profitably used
simulated annealing@8#. In Fig. 1 we show the optimalT(t)
and the ground-state probabilityp1(t) for the Gibbsian case
~12! and the Tsallis case~17! and ~18!. The temperature
variation is found to precisely follow the theoretical predi
tions ~15! and ~19! for large timet@1.

Here we note that the exponential asymptotic cooling~19!
is different from the well-known power law asymptotic coo
ing for generalized simulated annealing@8~a!# and we briefly
touch upon this point. In Ref.@10# it is shown that the gen-
eralized simulated annealing with power law cooling@8~a!#
satisfies the~weak! ergodicity property. That is, the fina
state arrived at by the simulated annealing is independen
the initial distribution function. On the other hand, in o
paper we do not claim that we give a sufficient or ergodic
condition for successful simulated annealing. Instead,

FIG. 1. TemperatureT(t) andp1(t), the probability to be in the
ground state 1, for the Gibbs~full curves! and Tsallis ~dotted
curves! statistics. T(0)50.3, p1(0)50.5 andD50.25,e51.0.
7-2



or
a

th

fo
e

t
-

a
l
f

d
po

d

n

an

hat

ble

l-

e
ich
w
ty

s

e

s

TEMPERATURE CONTROL FOR SIMULATED ANNEALING PHYSICAL REVIEW E64 046127
show that, if the initial distribution and other conditions f
the system parameters happen to be properly chosen,
consequently if the calculation is successful in the sense
T(t) becomes very small for larget, then the temperature
variation should be inverse logarithmic and exponential
Gibbsian and generalized simulated annealing, respectiv
In this sense the exponential behavior ofT(t) @Eq. ~9!# is not
contradictory with the power law@8~a!,10#.

We give here two comments: one is on how^E&(t) de-
pends on the temperature variation and the other on how
optimal T(t) changes asN increases from 2. For the two
level system considered above^E&(t) obtained from the op-
timal T(t) and from the linear variationTL(t)5T(0)2at,
with T(0)50.5 and a determined fromTL(t550)5T(t
550), are compared in Fig. 2. Here we tookp1(0)50.5 for
both cases. We note that the optimalT(t) depends only on
the initial probability distributionp(x,t50) and temperature
T(0), and it isreasonable that̂E&(t) from the optimalT(t)
is always smaller than that from the linear one. For
N-level system~up to N.103!, we found that the optima
T(t) behaves nearly the same as in the two-level system
long timest.50. However, in the range 0,t,50 cooling
becomes slower asN becomes larger. A more complicate
many-level system, a small scale TSP, will be touched u
later.

Next we consider the entropy productions(t) and the
Kullback-Leibler entropySKL(t) in the process of simulate
annealing. Introducing the statistical entropySst(T) by S[
2(p(x,t)ln p(x,t), we know that the entropy productio
s(t)dt in time dt, defined below, is non-negative@11#:

dSst~ t !5d^E&~ t !/T~ t !1s~ t !dt. ~20!

The Kullback-Leibler entropySKL(t) @12#, which is also
non-negative, is defined here as a measure of the dist
between the actual distributionp(x,t) and the equilibrium
distribution at temperatureT(t), Eq. ~4!,

FIG. 2. Average energŷE&(t) from the optimal temperature
T(t) ~full curve! and from the linear temperatureTL(t)5T(0)
2at ~dotted curve! for a two-level system~D50.25,e51.0!.
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SKL~ t !5Sp~x,t !ln@p~x,t !/peq„x:T~ t !…#. ~21!

s(t) andSKL(t) are related to each other through

SKL~ t !2SKL~0!52E
0

t

dt8s~ t8!2E
0

t

d^E&

3~ t8!
dT~ t8!

dt8 Y T2~ t8!, ~22!

where d^E&(t)[^E&(t)2^E&eq(t) with ^E&eq(t)
[(E(x)peq„x:T(t)…. Since it is expected thatdT(t)/dt,0
andd^E&(t).0 in a general annealing process, we see t
the first and the second terms of Eq.~22! are negative and
positive, respectively. In simulated annealing, it is desira
that the actual distributionp(x,t) precisely follows the equi-
librium distribution~4! and in this sense the optimal annea
ing process represented by Eq.~11! is expected to keep
SKL(t) small. We note that ifp(x,t).peq„x:T(t)… for any t,
it is proved that s(t)50 and also d^E&(t)50; thus
dSKL(t)/dt50 ~as it should!. However, in actual simulated
annealing the cooling rateudT(t)/dtu cannot be zero and th
system has to go through an irreversible process in wh
s(t).0. The question we would like to address is ho
SKL(t) is kept small, whether the degree of irreversibili
represented bys(t) is made small or the positivity ofs(t) is
used in order to counteract the second term of Eq.~22!. We
compare in Fig. 3SKL(t) for the two temperature variation
represented in Fig. 2. Also shown~inset! is the integrated
entropy production*0

t s(t8)dt8, from which we notice that
entropy productions(t) is larger for optimal control. Fort
,20, SKL(t) is definitely larger for the optimal case than th
linear case. However, the linearSKL(t) begins to increase

FIG. 3. Kullback-Leibler entropySKL(t) from the optimalT(t)
~full curve! and from the linear variationTL(t)5T(0)2at ~dotted
curve!. Inset: Integrated entropy production*0

t dt8s(t8) from the
optimal T(t) ~full curve! and from the linear variationTL(t)
5T(0)2at ~dotted curve!. The system and the initial condition
are the same as those in Fig. 2.
7-3
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around t.30, signaling that the functionp(x,t) deviates
from the equilibrium one, Eq.~4!. In passing it is noted tha
for the N-level model this increase ofSKL(t) seems to be a
general tendency for cooling schemes other than the opt
one.

Up to now we have been mainly concerned with a rat
simpleN ~52! -level system, which underlies many comple
systems@13#. In order to make contact with Monte Carl
simulations, we apply the optimal cooling schedule to
small scale TSP withM56 cities put at~0, 60.5!, ~1, 60.5!,
and~2, 60.5! with the minimum path lengthEmin56. For the
neighborhood structure of the paths we employ the L
Kernighan@14# 2-opt transition. Then1

6 of the elements of
the transition matrixW or D(t) in Eq. ~2!, which is anN
3N matrix with N5(M21)!/2560, turn out to be nonzero
In Fig. 4 we plot the optimalT(t) and the average energ
obtained from the initial conditionT(0)50.2 and p( i ,t
50)}exp@2Ei /T(0)#. The energy~5path length! is seen to
be rapidly approachingEmin , although T(t) has a bump
aroundt55. In this case we imposed no activation energy
the transition to states with lower energy~i.e., we used the
Metropolis algorithm! in contrast to theN-level system stud-
ied before. If we increase the initial temperatureT(0), we
cannot get aphysicalsolution, because the initial~equilib-
rium! distribution becomes more diffuse and goes out of
basin of the desirable attractor of Eqs.~2!, ~10!, and~11!. To
cope with this situation we introduced the activation ene

FIG. 4. T(t) ~full curve! and^E&(t) ~dotted curve! for the TSP
with M56 cities. Note that actually@^E&(t)2Emin#/10 is plotted
instead of̂ E&(t).
. E
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D50.3 in the transition to states with lower energy. T
result is shown in Fig. 5 forT(0)50.5, whereT(t) and also
^E&(t) change more slowly compared with Fig. 4 but a
attracted to the desirable stationary state of the coupled e
tions~2!, ~10!, and~11!. Thus introducing a nonzeroD seems
to extend the basin of the physical attractor with inevita
slow cooling. Here we comment on the utility of our a
proach in connection with realistic optimization problem
Usually, simulated annealing for optimization problems
volves many parameters, the values of which we can cho
to achieve good performance. Before embarking on sim
lated annealing for the large scale problem at hand, one
guess desirable ranges of each parameter by solving the
ferential equation~11! for a small scale problem, as we di
for the case of the TSP.

In this paper we studied temperature control for simula
annealing and derived a first order differential equation~11!
supplemented by Eqs.~2! and ~10!, whose properties were
studied for some simple model systems such as anN-level
system and a small scale TSP. Our concern here was dire
to conceptual rather than practical aspects of the simula
annealing methods. It is hoped that further studies of the
of equations~11!, ~2!, and~10! will shed more light on tech-
nical aspects of simulated annealing.

One of the authors~T.M.! expresses his gratitude to S
Ikemoto for useful discussions at an early stage of this stu

FIG. 5. The same as Fig. 4 except that the activation energD
50.3 is introduced and the initial temperatureT(0) is slightly
higher.
ch.
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